Abstract

Devices based on spectroscopy of atomic vapors can measure physical quantities such as magnetic fields, RF electric fields, time and length, and rotation and have applications in a broad range of fields including communications, medicine, and navigation. We present a type of photonic device that interfaces single-mode silicon nitride optical waveguides with warm atomic vapors, enabling precision spectroscopy in an extremely compact (<1  cm3) package. We perform precision spectroscopy of rubidium confined in a micro-machined, 27  mm3 volume, vapor cell using a collimated free-space 120 μm diameter laser beam derived directly from a single-mode silicon nitride waveguide. With this optical-fiber integrated photonic spectrometer, we demonstrate an optical frequency reference at 780 nm with a stability of 1011 from 1 to 104  s. This device harnesses the benefits of both photonic integration and precision spectroscopy for the next generation of quantum sensors and devices based on atomic vapors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-stabilized 1520-nm diode laser with rubidium 5S1/2 → 7S1/2 two-photon absorption

Hsiang-Chen Chui, Yi-Wei Liu, Jow-Tsong Shy, Sen-Yen Shaw, Rostislav V. Roussev, and Martin M. Fejer
Appl. Opt. 43(34) 6348-6351 (2004)

Atomic mercury vapor inside a hollow-core photonic crystal fiber

Ulrich Vogl, Christian Peuntinger, Nicolas Y. Joly, Philip St.J. Russell, Christoph Marquardt, and Gerd Leuchs
Opt. Express 22(24) 29375-29381 (2014)

Microresonator Brillouin laser stabilization using a microfabricated rubidium cell

William Loh, Matthew T. Hummon, Holly F. Leopardi, Tara M. Fortier, Frank Quinlan, John Kitching, Scott B. Papp, and Scott A. Diddams
Opt. Express 24(13) 14513-14524 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
    [Crossref]
  2. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
    [Crossref]
  3. D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [Crossref]
  4. J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
    [Crossref]
  5. S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
    [Crossref]
  6. J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
    [Crossref]
  7. H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
    [Crossref]
  8. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
    [Crossref]
  9. R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
    [Crossref]
  10. M. Takiguchi, Y. Yoshikawa, T. Yamamoto, K. Nakayama, and T. Kuga, “Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber,” Opt. Lett. 36, 1254–1256 (2011).
    [Crossref]
  11. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
    [Crossref]
  12. L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
    [Crossref]
  13. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
    [Crossref]
  14. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10  kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [Crossref]
  15. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
    [Crossref]
  16. A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
    [Crossref]
  17. M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
    [Crossref]
  18. C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
    [Crossref]
  19. P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
    [Crossref]
  20. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
    [Crossref]
  21. K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
    [Crossref]
  22. C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
    [Crossref]
  23. W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
    [Crossref]
  24. T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531  nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
    [Crossref]
  25. Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
    [Crossref]
  26. S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
  27. L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
    [Crossref]
  28. A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
    [Crossref]
  29. N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
    [Crossref]
  30. P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.
  31. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
    [Crossref]
  32. N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
    [Crossref]
  33. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
    [Crossref]
  34. P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
    [Crossref]
  35. V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
    [Crossref]
  36. A. Banerjee, D. Das, and V. Natarajan, “Precise frequency measurements of atomic transitions by use of a Rb-stabilized resonator,” Opt. Lett. 28, 1579–1581 (2003).
    [Crossref]
  37. W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
    [Crossref]
  38. T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
    [Crossref]

2017 (3)

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]

L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
[Crossref]

2016 (3)

2015 (5)

2014 (1)

N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]

2013 (1)

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

2012 (3)

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]

2011 (3)

M. Takiguchi, Y. Yoshikawa, T. Yamamoto, K. Nakayama, and T. Kuga, “Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber,” Opt. Lett. 36, 1254–1256 (2011).
[Crossref]

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

2010 (4)

H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

2009 (1)

2007 (3)

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

2005 (1)

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]

2004 (2)

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

2003 (1)

1997 (2)

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

1996 (1)

1993 (1)

V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]

1963 (1)

J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]

J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]

Abbott, P. C.

Affolderbach, C.

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]

Akamatsu, D.

Aksyuk, V. A.

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Anstie, J.

Anstie, J. D.

Banerjee, A.

Bang, O.

Benabid, F.

Beugnot, J. C.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Bhagwat, A. R.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

Bowers, J. E.

Briles, T. C.

Budker, D.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Burke, J. H.

N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

Chen, X.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Cooper, J.

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]

Corwin, K. L.

Couny, F.

Dale, E.

Das, D.

Davenport, M.

Degen, C. L.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

della Porta, P.

P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Diddams, S. A.

Donley, E. A.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

Douahi, A.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Drake, T. E.

Dziuban, J.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Eliyahu, D.

Emil, C.

P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.

Erickson, C. J.

N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

Fortier, T. M.

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]

Fraser, J.

J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]

Fung, C. K. Y.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Gaeta, A. L.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

Gallagher, A.

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]

Giordano, V.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Gorecki, C.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Green, W. M. J.

Greenwood, I.

J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]

Gruhler, N.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Guerandel, S.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Hager, G. D.

N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

Hald, J.

Hall, J. L.

Hänsch, T. W.

V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]

Hawkins, A.

H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]

Hawkins, A. R.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Hellier, S.

P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]

Hollberg, L.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

Hong, F.-L.

Hosaka, K.

Hostutler, D. A.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

Hulme, J.

Hummon, M. T.

Ilchenko, V. S.

Ilic, B. R.

Inaba, H.

Jones, A. M.

Jungner, P.

Kamlapurkar, S.

Kim, S.

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Kitching, J.

W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

Knabe, K.

Knappe, S.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

Kobayashi, T.

Komljenovic, T.

Kübler, H.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Kuga, T.

Lægsgaard, J.

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]

Leopardi, H. F.

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Li, C.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Li, Q.

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Liang, W.

Liew, L. A.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Light, P. S.

Lim, J.

Liu, A. Y.

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Loh, W.

Londero, P.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

Löw, R.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Luiten, A. N.

Lurie, A.

Lyngsø, J. K.

Maillote, H.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Maleki, L.

Matsko, A. B.

Mehta, K. K.

K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]

Michieletto, M.

Mileti, G.

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]

Moraja, M.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Moreland, J.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

Nakayama, K.

Natarajan, V.

Nicholson, J. W.

Nieradko, L.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

Okubo, S.

Onae, A.

Orcutt, J. S.

Papp, S. B.

Pernice, W.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Perram, G. P.

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

Perrella, C.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]

Pfau, T.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]

Quinlan, F.

Ram, R. J.

K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]

Reinhard, F.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

Ritter, R.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Robinson, H.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

Romalis, M. V.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Rotondaro, M. D.

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

Roxworthy, B. J.

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Rudolph, W.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

Santis, C. T.

Sautenkov, V. A.

V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]

Savchenkov, A. A.

Schmidt, H.

H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Schwettmann, A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Schwindt, P. D.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Sedlacek, J. A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Seidel, D.

Shaffer, J. P.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Shah, V.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Simpson, J.

J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]

Slepkov, A. D.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

Spott, A.

Srinivasan, K.

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Srinivasan, S.

Stace, T. M.

A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]

Stanton, E. J.

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Stone, J. R.

Swartz, S.

Takiguchi, M.

Tanabe, T.

Thapa, R.

Tillman, K. A.

Tombez, L.

Triches, M.

Tsang, H. K.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Venkataraman, V.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

Vuletic, V.

V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]

Wang, P.

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]

Washburn, B. R.

Westly, D. A.

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Wheeler, N.

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Wu, S.

Yamamoto, T.

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Yasuda, M.

Ye, J.

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Yoshikawa, Y.

Yulaev, A.

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

Zameroski, N. D.

N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

Zhang, C.

Zhang, E. J.

Zimmermann, C.

V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]

Electron. Lett. (1)

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

IEEE Sens. J. (1)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

IEEE Trans. Aerosp. (1)

J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. B (1)

N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]

Laser Photon. Rev. (1)

H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]

Nat. Commun. (1)

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Nat. Photonics (1)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]

Nat. Phys. (2)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Opt. Commun. (1)

V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]

Opt. Lett. (4)

Optica (2)

Phys. Rev. A (3)

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]

Phys. Rev. Lett. (1)

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]

Rev. Mod. Phys. (1)

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

Sci. Rep. (1)

K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]

Other (2)

S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).

P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Illustration of the photonic chip and micro-machined vapor cell. The photonic chip measures 9  mm×14  mm and uses fully etched silicon nitride waveguides (shown gray) clad in silicon dioxide (not shown) to guide the light from the edge of the chip to the atomic vapor. For work described here, a single waveguide (shown red) and grating are used. (a) Layer structure of the photonic chip. (b) Microscope image of the four-port angled fiber array coupling light into the Si3N4 waveguide. The upper port couples light into the waveguide for spectroscopy. The middle two ports are connected via a -shaped loopback waveguide used for initial alignment of the fiber array. The bottom port is unused here. (c) Microscope image of the apodized grating extreme mode converters with the superimposed red marks indicating the evolution of the optical field before it is out-coupled into free space by the grating. (d) Profile of the laser beam out-coupled from the extreme mode converter imaged at a height of 8 mm above the surface of the chip. (e) Top-view microscope image of the micro-machined vapor cell after activation of the Rb dispenser pill. The large chamber to the left remains clear for optical access, while by-products from the Rb dispenser pill activation obscure the window to the small chamber on the right, which contains the dispenser pill.
Fig. 2.
Fig. 2. Optical setup for laser stabilization. (a) Optical beams are shown in colored arrows. Electrical connections are shown in gray arrows. DBR, distributed Bragg reflector laser; ISO, optical isolator; VOA, variable optical attenuator; PD, photodiode; LO, local oscillator; LP, low pass filter; BP, band pass filter. (b) Error signals used for laser stabilization derived using FM and 3f spectroscopy. (c) Laser-OFC beat note for a free running and frequency dithered (3f) laser.
Fig. 3.
Fig. 3. Frequency stability of the DBR laser stabilized using the photonic spectrometer. For each measurement, the legends indicate the locking scheme (FM or 3f) and the sub-Doppler transition used, where the notation corresponds to the hyperfine levels of FgFe. (a) Frequency counter measurements with a 10 s measurement time per point. The inset shows the locked signal on a finer frequency scale. (b) Allan deviation for the stabilized DBR laser.
Fig. 4.
Fig. 4. Photonic chip frequency sensitivity to temperature changes. (a) Transmitted laser power as the chip baseplate temperature is scanned by 7°C over an interval of 80 s. (b) Comparison of the observed frequency shift to that predicted by the change in measured laser power shown in panel (a) and the measured frequency shift of 60 kHz/μW.