Abstract

We firstly develop a straightforward method to generate full Poincaré beams with any polarization geometry over an arbitrary order Poincaré sphere. We implement this by coaxial superposition of two orthogonal circular polarized beams with alternative topological charges with the help of a Mach–Zehnder interferometer. Secondly we find the existence of singularity points. And the inner relationship between their characteristics and the order of Poincaré spheres is also studied. In summary, this work provides a convenient and effective way to generate vector beams and to control their polarization states.

PDF Article

References

  • View by:
  • |

  1. M. S. Soskin and M. V. VasnetsovSingular opticsProg. Opt.2001424219276
  2. H. PoincaréThéorie mathématique de la lumiereGauthier Villars18922
  3. M. Born and E. WolfPrinciples of OpticsCambridge University1997
  4. A. M. Beckley, T. G. Brown, and M. A. AlonsoFull Poincaré beamsOpt. Express201018101077710785
  5. A. M. Beckley, T. G. Brown, and M. A. AlonsoFull Poincaré beams II: partial polarizationOpt. Express201220993579362
  6. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. AlfanoHigher-order Poincaré sphere, Stokes parameters, and the angular momentum of lightPhys. Rev. Lett.20111075053601
  7. X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. FanHybrid-order Poincaré spherePhys. Rev. A.2015912023801
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. WoerdmanOrbital angular momentum of light and the transformation of Laguerre-Gaussian laser modesPhys. Rev. A.199245118185
  9. Q. ZhanCylindrical vector beams: from mathematical concepts to applicationsAdv. Opt. Photon.200911157
  10. X. Ling, X. Yi, Z. Dai, Y. Wang, and L. ChenCharacterization and manipulation of full Poincaré beams on the hybrid Poincaré sphereJ. Opt. Soc. Am. B2016331121722176
  11. S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. WenGeneration of arbitrary cylindrical vector beams on the higher order Poincaré sphereOpt. Lett.2014391852745276
  12. F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. SantamatoGeneration and dynamics of optical beams with polarization singularitiesOpt. Express201321788158820
  13. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. FribergDegree of polarization for optical near fieldsPhys. Rev. E.2002661016615
  14. A. I. Mokhun, M. S. Soskin, and I. FreundElliptic critical points: C-points, a-lines, and the sign ruleOpt. Lett.20022712995997
  15. I. FreundPolarization singularity indices in Gaussian laser beamsOpt. Commun.20022014251270
  16. S. Feng and H. G. WinfulPhysical origin of the Gouy phase shiftOpt. Lett.2001268485487
  17. M.-Á. García-March, A. Ferrando, M. Zacarés, S. Sahu, and D. E. Ceballos-HerreraSymmetry, winding number, and topological charge of vortex solitons in discrete-symmetry mediaPhys. Rev. A.2009795053820
  18. A. Ferrando and M. A. García-MarchAnalytical solution for multi-singular vortex Gaussian beams: the mathematical theory of scattering modesJ. Opt.2016186064006
  19. E. Otte, C. Alpmann, and C. DenzHigher-order polarization singularitites in tailored vector beamsJ. Opt.201618074012
  20. M. R. DennisPolarization singularity anisotropy: determining monstardomOpt. Lett.2008332225722574
  21. W. Zhu, V. Shvedov, W. She, and W. KrolikowskiTransverse spin angular momentum of tightly focused full Poincaré beamsOpt. Express201523263402934041
  22. R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto, and M. TakedaCharacterization of spatial polarization fluctuations in scattered fieldJ. Opt.20141610105010
  23. S. G. Reddy, S. Prabhakar, A. Kumar, J. Banerji, and R. P. SinghHigher order optical vortices and formation of specklesOpt. Lett.2014391543644367
  24. S. G. Reddy, P. Chithrabhanu, P. Vaity, A. Aadhi, S. Prabhakar, and R. P. SinghNon-diffracting speckles of a perfect vortex beamJ. Opt.2016185055602

Other (24)

M. S. Soskin and M. V. VasnetsovSingular opticsProg. Opt.2001424219276

H. PoincaréThéorie mathématique de la lumiereGauthier Villars18922

M. Born and E. WolfPrinciples of OpticsCambridge University1997

A. M. Beckley, T. G. Brown, and M. A. AlonsoFull Poincaré beamsOpt. Express201018101077710785

A. M. Beckley, T. G. Brown, and M. A. AlonsoFull Poincaré beams II: partial polarizationOpt. Express201220993579362

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. AlfanoHigher-order Poincaré sphere, Stokes parameters, and the angular momentum of lightPhys. Rev. Lett.20111075053601

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. FanHybrid-order Poincaré spherePhys. Rev. A.2015912023801

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. WoerdmanOrbital angular momentum of light and the transformation of Laguerre-Gaussian laser modesPhys. Rev. A.199245118185

Q. ZhanCylindrical vector beams: from mathematical concepts to applicationsAdv. Opt. Photon.200911157

X. Ling, X. Yi, Z. Dai, Y. Wang, and L. ChenCharacterization and manipulation of full Poincaré beams on the hybrid Poincaré sphereJ. Opt. Soc. Am. B2016331121722176

S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. WenGeneration of arbitrary cylindrical vector beams on the higher order Poincaré sphereOpt. Lett.2014391852745276

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. SantamatoGeneration and dynamics of optical beams with polarization singularitiesOpt. Express201321788158820

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. FribergDegree of polarization for optical near fieldsPhys. Rev. E.2002661016615

A. I. Mokhun, M. S. Soskin, and I. FreundElliptic critical points: C-points, a-lines, and the sign ruleOpt. Lett.20022712995997

I. FreundPolarization singularity indices in Gaussian laser beamsOpt. Commun.20022014251270

S. Feng and H. G. WinfulPhysical origin of the Gouy phase shiftOpt. Lett.2001268485487

M.-Á. García-March, A. Ferrando, M. Zacarés, S. Sahu, and D. E. Ceballos-HerreraSymmetry, winding number, and topological charge of vortex solitons in discrete-symmetry mediaPhys. Rev. A.2009795053820

A. Ferrando and M. A. García-MarchAnalytical solution for multi-singular vortex Gaussian beams: the mathematical theory of scattering modesJ. Opt.2016186064006

E. Otte, C. Alpmann, and C. DenzHigher-order polarization singularitites in tailored vector beamsJ. Opt.201618074012

M. R. DennisPolarization singularity anisotropy: determining monstardomOpt. Lett.2008332225722574

W. Zhu, V. Shvedov, W. She, and W. KrolikowskiTransverse spin angular momentum of tightly focused full Poincaré beamsOpt. Express201523263402934041

R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto, and M. TakedaCharacterization of spatial polarization fluctuations in scattered fieldJ. Opt.20141610105010

S. G. Reddy, S. Prabhakar, A. Kumar, J. Banerji, and R. P. SinghHigher order optical vortices and formation of specklesOpt. Lett.2014391543644367

S. G. Reddy, P. Chithrabhanu, P. Vaity, A. Aadhi, S. Prabhakar, and R. P. SinghNon-diffracting speckles of a perfect vortex beamJ. Opt.2016185055602

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.