Abstract

Lymphoma is a significant cancer that affects the human lymphatic and hematopoietic systems. In this work, discrimination of lymphoma using laser-induced breakdown spectroscopy (LIBS) conducted on whole blood samples is presented. The whole blood samples collected from lymphoma patients and healthy controls are deposited onto standard quantitative filter papers and ablated with a 1064 nm Q-switched Nd:YAG laser. 16 atomic and ionic emission lines of calcium (Ca), iron (Fe), magnesium (Mg), potassium (K) and sodium (Na) are selected to discriminate the cancer disease. Chemometric methods, including principal component analysis (PCA), linear discriminant analysis (LDA) classification, and k nearest neighbor (kNN) classification are used to build the discrimination models. Both LDA and kNN models have achieved very good discrimination performances for lymphoma, with an accuracy of over 99.7%, a sensitivity of over 0.996, and a specificity of over 0.997. These results demonstrate that the whole-blood-based LIBS technique in combination with chemometric methods can serve as a fast, less invasive, and accurate method for detection and discrimination of human malignancies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma

Christian Knipfer, Johanna Motz, Werner Adler, Kathrin Brunner, Medhaine Tesfay Gebrekidan, Robert Hankel, Abbas Agaimy, Stefan Will, Andreas Braeuer, Friedrich Wilhelm Neukam, and Florian Stelzle
Biomed. Opt. Express 5(9) 3252-3265 (2014)

Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy

E. Teran-Hinojosa, H. Sobral, C. Sánchez-Pérez, A. Pérez-García, N. Alemán-García, and J. Hernández-Ruiz
Biomed. Opt. Express 8(8) 3816-3827 (2017)

Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis

Meisam Gazmeh, Maryam Bahreini, and Seyed Hassan Tavassoli
Appl. Opt. 54(1) 123-131 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. L. M. Ervik, J. Ferlay, L. Mery, I. Soerjomataram, and F. Bray, “Cancer Today.,” (International Agency for Research on Cancer, 2016), http://gco.iarc.fr/today/home , Accessed August 2, 2017.
  2. World Health Organization, “Global Health Estimates 2015: Global Deaths by Cause, Age and Sex, 2000-2015,” http://www.who.int/healthinfo/global_burden_disease/en/ , Accessed August 2, 2017.
  3. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  4. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, Ltd, 2006).
  5. M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
    [Crossref]
  6. S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
    [Crossref] [PubMed]
  7. S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(10), 1169–1176 (2007).
    [Crossref]
  8. S. J. Rehse, H. Salimnia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications,” J. Med. Eng. Technol. 36(2), 77–89 (2012).
    [Crossref] [PubMed]
  9. V. K. Singh and A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
    [Crossref] [PubMed]
  10. O. Samek, H. H. Telle, and D. C. S. Beddows, “Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth,” BMC Oral Health 1(1), 1–9 (2001).
    [Crossref] [PubMed]
  11. R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
    [Crossref]
  12. F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
    [Crossref] [PubMed]
  13. A. Kumar, F.-Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
    [Crossref] [PubMed]
  14. A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
    [Crossref] [PubMed]
  15. J. H. Han, Y. Moon, J. J. Lee, S. Choi, Y.-C. Kim, and S. Jeong, “Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy,” Biomed. Opt. Express 7(1), 57–66 (2015).
    [Crossref] [PubMed]
  16. N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
    [Crossref]
  17. X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
    [Crossref]
  18. S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
    [Crossref] [PubMed]
  19. P. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman and Hall Ltd., London, 1976).
  20. F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
    [Crossref]
  21. S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
    [Crossref]
  22. G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
    [Crossref]
  23. G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
    [Crossref]
  24. E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy,” Food Chem. 54(3), 321–326 (1995).
    [Crossref]
  25. F. W. B. Aquino and E. R. Pereira-Filho, “Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: Chemometric applications for better data interpretation,” Talanta 134, 65–73 (2015).
    [Crossref] [PubMed]
  26. C. Di Anibal, M. S. Rodriguez, and L. Albertengo, “UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes,” Food Anal. Methods 7(5), 1090–1096 (2014).
    [Crossref]
  27. Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
    [Crossref]
  28. I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Tools and Techniques (Elsevier Inc., 2011).
  29. M. H. Rosner and A. C. Dalkin, “Electrolyte disorders associated with cancer,” Adv. Chronic Kidney Dis. 21(1), 7–17 (2014).
    [Crossref] [PubMed]
  30. Y.-L. Huang, J.-Y. Sheu, and T.-H. Lin, “Association between oxidative stress and changes of trace elements in patients with breast cancer,” Clin. Biochem. 32(2), 131–136 (1999).
    [Crossref] [PubMed]
  31. Q. Pasha, S. A. Malik, and M. H. Shah, “Statistical analysis of trace metals in the plasma of cancer patients versus controls,” J. Hazard. Mater. 153(3), 1215–1221 (2008).
    [Crossref] [PubMed]
  32. W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
    [Crossref] [PubMed]

2018 (1)

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

2016 (3)

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

2015 (2)

F. W. B. Aquino and E. R. Pereira-Filho, “Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: Chemometric applications for better data interpretation,” Talanta 134, 65–73 (2015).
[Crossref] [PubMed]

J. H. Han, Y. Moon, J. J. Lee, S. Choi, Y.-C. Kim, and S. Jeong, “Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy,” Biomed. Opt. Express 7(1), 57–66 (2015).
[Crossref] [PubMed]

2014 (4)

C. Di Anibal, M. S. Rodriguez, and L. Albertengo, “UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes,” Food Anal. Methods 7(5), 1090–1096 (2014).
[Crossref]

M. H. Rosner and A. C. Dalkin, “Electrolyte disorders associated with cancer,” Adv. Chronic Kidney Dis. 21(1), 7–17 (2014).
[Crossref] [PubMed]

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

2013 (1)

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

2012 (2)

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

S. J. Rehse, H. Salimnia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications,” J. Med. Eng. Technol. 36(2), 77–89 (2012).
[Crossref] [PubMed]

2011 (2)

V. K. Singh and A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[Crossref] [PubMed]

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

2010 (3)

A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

2008 (1)

Q. Pasha, S. A. Malik, and M. H. Shah, “Statistical analysis of trace metals in the plasma of cancer patients versus controls,” J. Hazard. Mater. 153(3), 1215–1221 (2008).
[Crossref] [PubMed]

2007 (1)

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(10), 1169–1176 (2007).
[Crossref]

2006 (1)

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

2004 (1)

2001 (1)

O. Samek, H. H. Telle, and D. C. S. Beddows, “Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth,” BMC Oral Health 1(1), 1–9 (2001).
[Crossref] [PubMed]

2000 (1)

S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
[Crossref]

1999 (1)

Y.-L. Huang, J.-Y. Sheu, and T.-H. Lin, “Association between oxidative stress and changes of trace elements in patients with breast cancer,” Clin. Biochem. 32(2), 131–136 (1999).
[Crossref] [PubMed]

1995 (1)

E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy,” Food Chem. 54(3), 321–326 (1995).
[Crossref]

1979 (1)

W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
[Crossref] [PubMed]

Adler, W.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

Albertengo, L.

C. Di Anibal, M. S. Rodriguez, and L. Albertengo, “UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes,” Food Anal. Methods 7(5), 1090–1096 (2014).
[Crossref]

Amodeo, T.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Anzano, J.

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

Aquino, F. W. B.

F. W. B. Aquino and E. R. Pereira-Filho, “Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: Chemometric applications for better data interpretation,” Talanta 134, 65–73 (2015).
[Crossref] [PubMed]

Ayala, J. A.

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Baudelet, M.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Beddows, D. C. S.

O. Samek, H. H. Telle, and D. C. S. Beddows, “Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth,” BMC Oral Health 1(1), 1–9 (2001).
[Crossref] [PubMed]

Bossu, M.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Burgess, S.

Caceres, J. O.

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Celko, L.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

Chen, D.

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

Chen, X.

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

Choi, S.

Colao, F.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Connolly, D. C.

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Dalkin, A. C.

M. H. Rosner and A. C. Dalkin, “Electrolyte disorders associated with cancer,” Adv. Chronic Kidney Dis. 21(1), 7–17 (2014).
[Crossref] [PubMed]

de Villena, F. J. M.

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Di Anibal, C.

C. Di Anibal, M. S. Rodriguez, and L. Albertengo, “UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes,” Food Anal. Methods 7(5), 1090–1096 (2014).
[Crossref]

Diedrich, J.

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(10), 1169–1176 (2007).
[Crossref]

El-Hussein, A.

A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
[Crossref] [PubMed]

Ewusi-Annan, E.

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Fantoni, R.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Flynn, A.

W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
[Crossref] [PubMed]

Fréjafon, E.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Godoi, Q.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

Goode, S. R.

S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
[Crossref]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Han, J. H.

Harith, M. A.

A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
[Crossref] [PubMed]

Hoskins, R.

S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
[Crossref]

Hrdlicka, A.

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Huang, Y.-L.

Y.-L. Huang, J.-Y. Sheu, and T.-H. Lin, “Association between oxidative stress and changes of trace elements in patients with breast cancer,” Clin. Biochem. 32(2), 131–136 (1999).
[Crossref] [PubMed]

Idris, N.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Ismail, H.

A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
[Crossref] [PubMed]

Izquierdo-Hornillos, R.

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Jeong, S.

Jovelet, J.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Kaiser, J.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Kanawade, R.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Kassem, A. K.

A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
[Crossref] [PubMed]

Kemsley, E. K.

E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy,” Food Chem. 54(3), 321–326 (1995).
[Crossref]

Kim, Y.-C.

Klämpfl, F.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

Knipfer, C.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Krug, F. J.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

Kumar, A.

Laloi, P.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Lasue, J.

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Lee, J. J.

Leme, F. O.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

Li, X.

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

Lin, T.-H.

Y.-L. Huang, J.-Y. Sheu, and T.-H. Lin, “Association between oxidative stress and changes of trace elements in patients with breast cancer,” Clin. Biochem. 32(2), 131–136 (1999).
[Crossref] [PubMed]

Liu, A.

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

Makrogiannis, S.

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Malik, S. A.

Q. Pasha, S. A. Malik, and M. H. Shah, “Statistical analysis of trace metals in the plasma of cancer patients versus controls,” J. Hazard. Mater. 153(3), 1215–1221 (2008).
[Crossref] [PubMed]

Malina, R.

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Mansour, E. G.

W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
[Crossref] [PubMed]

Manzoor, S.

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Markushin, Y.

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Martin, J.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Mehari, F.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Melikechi, N.

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Miziolek, A. W.

S. J. Rehse, H. Salimnia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications,” J. Med. Eng. Technol. 36(2), 77–89 (2012).
[Crossref] [PubMed]

Moncayo, S.

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Moon, Y.

Morgan, S. L.

S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
[Crossref]

Navarro-Villoslada, F.

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Novotný, J.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Novotný, K.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Ortiz, P.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Ortiz, R.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Oxsher, A.

S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
[Crossref]

Palchaudhuri, S.

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(10), 1169–1176 (2007).
[Crossref]

Pasha, Q.

Q. Pasha, S. A. Malik, and M. H. Shah, “Statistical analysis of trace metals in the plasma of cancer patients versus controls,” J. Hazard. Mater. 153(3), 1215–1221 (2008).
[Crossref] [PubMed]

Pereira Filho, E. R.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

Pereira-Filho, E. R.

F. W. B. Aquino and E. R. Pereira-Filho, “Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: Chemometric applications for better data interpretation,” Talanta 134, 65–73 (2015).
[Crossref] [PubMed]

Pories, W. J.

W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
[Crossref] [PubMed]

Porízka, P.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

Prochazka, D.

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Prokeš, L.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Rai, A. K.

V. K. Singh and A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[Crossref] [PubMed]

Rehse, S. J.

S. J. Rehse, H. Salimnia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications,” J. Med. Eng. Technol. 36(2), 77–89 (2012).
[Crossref] [PubMed]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(10), 1169–1176 (2007).
[Crossref]

Rodriguez, M. S.

C. Di Anibal, M. S. Rodriguez, and L. Albertengo, “UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes,” Food Anal. Methods 7(5), 1090–1096 (2014).
[Crossref]

Rohde, M.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Rosales, J. D.

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

Rosner, M. H.

M. H. Rosner and A. C. Dalkin, “Electrolyte disorders associated with cancer,” Adv. Chronic Kidney Dis. 21(1), 7–17 (2014).
[Crossref] [PubMed]

Ruault, S.

E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy,” Food Chem. 54(3), 321–326 (1995).
[Crossref]

Rufini, I. A.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

Salimnia, H.

S. J. Rehse, H. Salimnia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications,” J. Med. Eng. Technol. 36(2), 77–89 (2012).
[Crossref] [PubMed]

Samek, O.

O. Samek, H. H. Telle, and D. C. S. Beddows, “Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth,” BMC Oral Health 1(1), 1–9 (2001).
[Crossref] [PubMed]

Santos, D.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

Schmidt, M.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Shah, M. H.

Q. Pasha, S. A. Malik, and M. H. Shah, “Statistical analysis of trace metals in the plasma of cancer patients versus controls,” J. Hazard. Mater. 153(3), 1215–1221 (2008).
[Crossref] [PubMed]

Sheu, J.-Y.

Y.-L. Huang, J.-Y. Sheu, and T.-H. Lin, “Association between oxidative stress and changes of trace elements in patients with breast cancer,” Clin. Biochem. 32(2), 131–136 (1999).
[Crossref] [PubMed]

Singh, J. P.

Singh, V. K.

V. K. Singh and A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[Crossref] [PubMed]

Stelzle, F.

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Tangermann-Gerk, K.

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Telle, H. H.

O. Samek, H. H. Telle, and D. C. S. Beddows, “Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth,” BMC Oral Health 1(1), 1–9 (2001).
[Crossref] [PubMed]

Trevizan, L. C.

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

van Rij, A. M.

W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
[Crossref] [PubMed]

Vazquez, M.

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

Vítková, G.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

Všianský, D.

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

Wilson, R. H.

E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy,” Food Chem. 54(3), 321–326 (1995).
[Crossref]

Wolf, J.-P.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Yu, J.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Yu, X.

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

Yueh, F.-Y.

Adv. Chronic Kidney Dis. (1)

M. H. Rosner and A. C. Dalkin, “Electrolyte disorders associated with cancer,” Adv. Chronic Kidney Dis. 21(1), 7–17 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89(16), 163903 (2006).
[Crossref]

Appl. Spectrosc. (1)

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Biol. Trace Elem. Res. (1)

W. J. Pories, A. M. van Rij, E. G. Mansour, and A. Flynn, “Trace element profiles in cancer patients,” Biol. Trace Elem. Res. 1(3), 229–241 (1979).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

BMC Oral Health (1)

O. Samek, H. H. Telle, and D. C. S. Beddows, “Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth,” BMC Oral Health 1(1), 1–9 (2001).
[Crossref] [PubMed]

Clin. Biochem. (1)

Y.-L. Huang, J.-Y. Sheu, and T.-H. Lin, “Association between oxidative stress and changes of trace elements in patients with breast cancer,” Clin. Biochem. 32(2), 131–136 (1999).
[Crossref] [PubMed]

Food Anal. Methods (1)

C. Di Anibal, M. S. Rodriguez, and L. Albertengo, “UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes,” Food Anal. Methods 7(5), 1090–1096 (2014).
[Crossref]

Food Chem. (1)

E. K. Kemsley, S. Ruault, and R. H. Wilson, “Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy,” Food Chem. 54(3), 321–326 (1995).
[Crossref]

J. Anal. At. Spectrom. (1)

S. R. Goode, S. L. Morgan, R. Hoskins, and A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15(9), 1133–1138 (2000).
[Crossref]

J. Biophotonics (1)

F. Mehari, M. Rohde, R. Kanawade, C. Knipfer, W. Adler, F. Klämpfl, F. Stelzle, and M. Schmidt, “Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery,” J. Biophotonics 9(10), 1021–1032 (2016).
[Crossref] [PubMed]

J. Hazard. Mater. (1)

Q. Pasha, S. A. Malik, and M. H. Shah, “Statistical analysis of trace metals in the plasma of cancer patients versus controls,” J. Hazard. Mater. 153(3), 1215–1221 (2008).
[Crossref] [PubMed]

J. Med. Eng. Technol. (1)

S. J. Rehse, H. Salimnia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications,” J. Med. Eng. Technol. 36(2), 77–89 (2012).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

V. K. Singh and A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (8)

N. Melikechi, Y. Markushin, D. C. Connolly, J. Lasue, E. Ewusi-Annan, and S. Makrogiannis, “Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 123, 33–41 (2016).
[Crossref]

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B At. Spectrosc. 66(2), 138–143 (2011).
[Crossref]

X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, “Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods,” Spectrochim. Acta B At. Spectrosc. 139, 63–69 (2018).
[Crossref]

G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser, “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 191–199 (2014).
[Crossref]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(10), 1169–1176 (2007).
[Crossref]

F. Colao, R. Fantoni, P. Ortiz, M. Vazquez, J. Martin, R. Ortiz, and N. Idris, “Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis,” Spectrochim. Acta B At. Spectrosc. 65(8), 688–694 (2010).
[Crossref]

G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, “Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks,” Spectrochim. Acta B At. Spectrosc. 73, 1–6 (2012).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism,” Spectrochim. Acta B At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Talanta (4)

S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, “Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS),” Talanta 158, 185–191 (2016).
[Crossref] [PubMed]

F. W. B. Aquino and E. R. Pereira-Filho, “Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: Chemometric applications for better data interpretation,” Talanta 134, 65–73 (2015).
[Crossref] [PubMed]

A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82(2), 495–501 (2010).
[Crossref] [PubMed]

S. Manzoor, S. Moncayo, F. Navarro-Villoslada, J. A. Ayala, R. Izquierdo-Hornillos, F. J. M. de Villena, and J. O. Caceres, “Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 121, 65–70 (2014).
[Crossref] [PubMed]

Other (5)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, Ltd, 2006).

P. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman and Hall Ltd., London, 1976).

World Health Organization, “Global Health Estimates 2015: Global Deaths by Cause, Age and Sex, 2000-2015,” http://www.who.int/healthinfo/global_burden_disease/en/ , Accessed August 2, 2017.

F. L. M. Ervik, J. Ferlay, L. Mery, I. Soerjomataram, and F. Bray, “Cancer Today.,” (International Agency for Research on Cancer, 2016), http://gco.iarc.fr/today/home , Accessed August 2, 2017.

I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Tools and Techniques (Elsevier Inc., 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for LIBS measurements on whole blood samples.

Fig. 2
Fig. 2

Normalized average LIBS spectra of the whole blood samples of the lymphoma class and healthy control class in the spectral range 325-850 nm.

Fig. 3
Fig. 3

Enlarged normalized average LIBS spectra of the whole blood samples of the lymphoma class and healthy control class in the spectral range 325-550 nm.

Fig. 4
Fig. 4

Comparison of the normalized intensities of several LIBS emission lines of the whole blood samples of the lymphoma class and healthy control class. The shown intensities of Mg I 516.73 nm, Mg I 517.27 nm, Fe I 371.99 nm and Fe I 374.95 nm are multiplied by 20 folds. The error bars are the standard deviations of the intensities of independent spectra.

Fig. 5
Fig. 5

Correlation of the normalized intensities of several LIBS emission lines of the whole blood samples of the lymphoma class with the cancer progression stages. The shown intensities of Mg I 516.73 nm, Mg I 517.27 nm, Fe I 371.99 nm and Fe I 374.95 nm are multiplied by 20 folds. The error bars are the standard deviations of the intensities of independent spectra.

Fig. 6
Fig. 6

Scatter plot of the scores of the first 3 PCs for the lymphoma class and healthy control class.

Fig. 7
Fig. 7

Loadings for PC1 to PC4 at different spectral emission lines. The spectral lines corresponding to the indices in the loading plots are shown in Table 2.

Fig. 8
Fig. 8

Receiver operating characteristic curves obtained by LDA and kNN models for discrimination of lymphoma. The working points of the models are indicated with the solid circles.

Tables (4)

Tables Icon

Table 1 The emission lines selected for the discrimination analysis

Tables Icon

Table 2 The spectral lines corresponding to the indices in the loading plots

Tables Icon

Table 3 Confusion matrix of the LDA model

Tables Icon

Table 4 Confusion matrix of the kNN model (k = 10)