Abstract

Unlike conventional optics, plasmonics enables unrivaled concentration of optical energy well beyond the diffraction limit of light. However, a significant part of this energy is dissipated as heat. Plasmonic losses present a major hurdle in the development of plasmonic devices and circuits that can compete with other mature technologies. Until recently, they have largely kept the use of plasmonics to a few niche areas where loss is not a key factor, such as surface-enhanced Raman scattering and biochemical sensing. Here, we discuss the origin of plasmonic losses and various approaches to either minimize or mitigate them based on understanding of fundamental processes underlying surface plasmon modes excitation and decay. Along with the ongoing effort to find and synthesize better plasmonic materials, optical designs that modify the optical powerflow through plasmonic nanostructures can help in reducing both radiative damping and dissipative losses of surface plasmons. Another strategy relies on the development of hybrid photonic–plasmonic devices by coupling plasmonic nanostructures to resonant optical elements. Hybrid integration not only helps to reduce dissipative losses and radiative damping of surface plasmons, but also makes possible passive radiative cooling of nanodevices. Finally, we review emerging applications of thermoplasmonics that leverage Ohmic losses to achieve new enhanced functionalities. The most successful commercialized example of a loss-enabled novel application of plasmonics is heat-assisted magnetic recording. Other promising technological directions include thermal emission manipulation, cancer therapy, nanofabrication, nanomanipulation, plasmon-enabled material spectroscopy and thermo-catalysis, solar water treatment, and thermophotovoltaics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Resonance enhanced absorption in a graphene monolayer using deep metal gratings

B. Zhao, J. M. Zhao, and Z. M. Zhang
J. Opt. Soc. Am. B 32(6) 1176-1185 (2015)

Theory and technology of SPASERs

Malin Premaratne and Mark I. Stockman
Adv. Opt. Photon. 9(1) 79-128 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  2. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer, 2006).
  3. M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140, 386–406 (2015).
    [Crossref]
  4. J. Wang, S. V. Boriskina, H. Wang, and B. M. Reinhard, “Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling,” ACS Nano 5, 6619–6628 (2011).
    [Crossref]
  5. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
    [Crossref]
  6. R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19, 22113–22124 (2011).
    [Crossref]
  7. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
    [Crossref]
  8. L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
    [Crossref]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  10. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
    [Crossref]
  11. N. J. Halas, “Connecting the dots: reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. USA 106, 3643–3644 (2009)..
    [Crossref]
  12. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).
    [Crossref]
  13. A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
    [Crossref]
  14. N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22, 11236–11243 (2014).
    [Crossref]
  15. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
    [Crossref]
  16. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
    [Crossref]
  17. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99, 211106 (2011).
    [Crossref]
  18. G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
    [Crossref]
  19. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
    [Crossref]
  20. A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
    [Crossref]
  21. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [Crossref]
  22. P. Drude, Lehrbuch Der Optik (Trapeza, 1906).
  23. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [Crossref]
  24. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [Crossref]
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  26. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  27. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
    [Crossref]
  28. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. 98.
  30. J. D. Callen, Fundamentals of Plasma Physics (University of Wisconsin, 2006).
  31. D. J. Roaf, “The Fermi surfaces of copper, silver and gold II. Calculation of the Fermi surfaces,” Philos. Trans. R. Soc. London A 255, 135–152 (1962).
    [Crossref]
  32. S. B. Dugdale, “Life on the edge: a beginner’s guide to the Fermi surface,” Phys. Scripta 91, 053009 (2016).
    [Crossref]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  34. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
    [Crossref]
  35. A. Ziashahabi and R. Poursalehi, “The effects of surface oxidation and interparticle coupling on surface plasmon resonance properties of aluminum nanoparticles as a UV plasmonic material,” Procedia Mater. Sci. 11, 434–437 (2015).
    [Crossref]
  36. F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
    [Crossref]
  37. L. Landau, “On the vibration of the electronic plasma,” J. Phys. USSR 10, 25–34 (1946).
  38. C. Mouhot and C. Villani, “On Landau damping,” Acta Math. 207, 29–201 (2011).
    [Crossref]
  39. X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15, 23011 (2013).
    [Crossref]
  40. G. Manfredi, “How to model quantum plasmas,” Fields Inst. Commun. 46, 263–287 (2005).
  41. J. R. Jasperse and B. Basu, “The dielectric function for the Balescu–Lenard–Poisson kinetic equations,” Phys. Fluids 29, 110–121 (1986).
    [Crossref]
  42. A. Bendib, “Dielectric functions for the Vlasov–Landau equation,” Phys. Rev. E 47, 3598–3606 (1993).
    [Crossref]
  43. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
    [Crossref]
  44. D. Pines, Elementary Excitations in Solids: Lectures on Phonons, Electrons, and Plasmons (W.A. Benjamin, 1964).
  45. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
    [Crossref]
  46. E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
    [Crossref]
  47. A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Optical absorption and scattering spectroscopies of single nano-objects,” Chem. Soc. Rev. 43, 3921–3956 (2014).
    [Crossref]
  48. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
    [Crossref]
  49. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
    [Crossref]
  50. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  51. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
    [Crossref]
  52. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
    [Crossref]
  53. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  54. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  55. J. Chae, B. Lahiri, and A. Centrone, “Engineering near-field SEIRA enhancements in plasmonic resonators,” ACS Photon. 3, 87–95 (2016).
    [Crossref]
  56. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
    [Crossref]
  57. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  58. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
    [Crossref]
  59. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [Crossref]
  60. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [Crossref]
  61. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  62. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  63. S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33, 863–871 (2012).
    [Crossref]
  64. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024 (2011).
    [Crossref]
  65. M. Svedendahl and M. Käll, “Fano interference between localized plasmons and interface reflections,” ACS Nano 6, 7533–7539 (2012).
    [Crossref]
  66. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
    [Crossref]
  67. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 43903 (2008).
    [Crossref]
  68. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C 115, 4578–4583 (2011).
    [Crossref]
  69. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
    [Crossref]
  70. S. V. Boriskina, Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds. (Springer, 2010), Vol. 156.
  71. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006).
    [Crossref]
  72. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
    [Crossref]
  73. S. V. Boriskina, Plasmonics in Metal Nanostructures, T. V. Shahbazyan and M. I. Stockman, eds. (Springer, 2013).
  74. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
    [Crossref]
  75. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
    [Crossref]
  76. M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
    [Crossref]
  77. S. V. Boriskina and N. Zheludev, Singular and Chiral Nanoplasmonics (Stanford, 2014).
  78. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
    [Crossref]
  79. M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
    [Crossref]
  80. L. Hoddeson, G. Baym, and M. Eckert, “The development of the quantum-mechanical electron theory of metals: 1928–1933,” Rev. Mod. Phys. 59, 287–327 (1987).
    [Crossref]
  81. M. Moskovits, I. Srnová-Šloufová, and B. Vlčková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
    [Crossref]
  82. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [Crossref]
  83. D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
    [Crossref]
  84. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
    [Crossref]
  85. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  86. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  87. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20, 12155–12165 (2012).
    [Crossref]
  88. S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films,” Photonics 2, 659–683 (2015).
    [Crossref]
  89. A. Tsiatmas, V. A. Fedotov, F. J. García de Abajo, and N. I. Zheludev, “Low-loss terahertz superconducting plasmonics,” New J. Phys. 14, 115006 (2012).
    [Crossref]
  90. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 47401 (2012).
    [Crossref]
  91. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
  92. H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
    [Crossref]
  93. J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
    [Crossref]
  94. K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23, A1418–A1433 (2015).
    [Crossref]
  95. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
    [Crossref]
  96. L. D. Landau and V. L. Ginzburg, “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).
  97. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).
    [Crossref]
  98. T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
    [Crossref]
  99. S. Das Sarma and E. H. Hwang, “Collective modes of the massless Dirac plasma,” Phys. Rev. Lett. 102, 206412 (2009).
    [Crossref]
  100. A. Hill, S. A. Mikhailov, and K. Ziegler, “Dielectric function and plasmons in graphene,” Europhys. Lett. 87, 27005 (2009).
    [Crossref]
  101. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
    [Crossref]
  102. A. M. Dubrovkin, J. Tao, X. Chao Yu, N. I. Zheludev, and Q. Jie Wang, “The reduction of surface plasmon losses in quasi-suspended graphene,” Sci. Rep. 5, 9837 (2015).
    [Crossref]
  103. T. Stauber, “Plasmonics in Dirac systems: from graphene to topological insulators,” J. Phys. 26, 123201 (2014).
    [Crossref]
  104. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  105. G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
    [Crossref]
  106. X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
    [Crossref]
  107. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375–378 (2010).
    [Crossref]
  108. S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
    [Crossref]
  109. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  110. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
    [Crossref]
  111. P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
    [Crossref]
  112. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
    [Crossref]
  113. M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater. 10, 382–388 (2011).
    [Crossref]
  114. H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
    [Crossref]
  115. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref]
  116. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
    [Crossref]
  117. Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties,” J. Phys. Chem. Lett. 6, 2056–2064 (2015).
    [Crossref]
  118. Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25, 115–119 (2013).
    [Crossref]
  119. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 73701 (2011).
    [Crossref]
  120. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
    [Crossref]
  121. S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical-thermal antennas for enhanced light focusing and local temperature control,” ACS Photon. 3, 1714–1722 (2016).
    [Crossref]
  122. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21, 32086–32098 (2013).
    [Crossref]
  123. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6, 951–960 (2012).
    [Crossref]
  124. S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19, 22305–22315 (2011).
    [Crossref]
  125. W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7, 4470–4478 (2013).
    [Crossref]
  126. W. Ahn, Y. Hong, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays,” Nanophotonics 4, 250–260 (2015).
    [Crossref]
  127. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
    [Crossref]
  128. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5, 2831–2838 (2011).
    [Crossref]
  129. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
    [Crossref]
  130. Q. Wang, H. Zhao, X. Du, W. Zhang, M. Qiu, and Q. Li, “Hybrid photonic-plasmonic molecule based on metal/Si disks,” Opt. Express 21, 11037–11047 (2013).
    [Crossref]
  131. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
    [Crossref]
  132. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20, 1910–1916 (2010).
    [Crossref]
  133. V. N. Boriskin, M. I. Ayzatsky, S. V. Boriskina, Y. P. Machehin, and A. Semenov, “Theoretical and experimental study of temperature-dependent spectral properties of multi-layer metal-dielectric nano-film structures,” in 9th International Conference on Transparent Optical Networks (2007), Vol. 4.
  134. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  135. S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.
  136. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
    [Crossref]
  137. R. Badugu, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure,” Anal. Biochem. 445, 1–13 (2014).
    [Crossref]
  138. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  139. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
    [Crossref]
  140. W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2016).
    [Crossref]
  141. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8, 7630–7638 (2014).
    [Crossref]
  142. H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
    [Crossref]
  143. M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
    [Crossref]
  144. J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
    [Crossref]
  145. S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE 9608, 960816 (2015).
    [Crossref]
  146. A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115, 134301 (2014).
    [Crossref]
  147. B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
    [Crossref]
  148. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref]
  149. P. J. Schuck, “Nanoimaging: hot electrons go through the barrier,” Nat. Nanotechnol. 8, 799–800 (2013).
    [Crossref]
  150. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101, 073905 (2012).
    [Crossref]
  151. G. V. Naik and J. A. Dionne, “Photon upconversion with hot carriers in plasmonic systems,” Appl. Phys. Lett. 107, 133902 (2015).
    [Crossref]
  152. M. Sun and H. Xu, “A novel application of plasmonics: plasmon-driven surface-catalyzed reactions,” Small 8, 2777–2786 (2012).
    [Crossref]
  153. S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
    [Crossref]
  154. S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
    [Crossref]
  155. M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
    [Crossref]
  156. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
    [Crossref]
  157. N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
    [Crossref]
  158. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6, 2776–2802 (2016).
    [Crossref]
  159. P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
    [Crossref]
  160. G. Chen, “Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles,” J. Heat Transfer 118, 539–545 (1996).
    [Crossref]
  161. B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
    [Crossref]
  162. C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
    [Crossref]
  163. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
    [Crossref]
  164. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
    [Crossref]
  165. M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 41570 (2010).
    [Crossref]
  166. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [Crossref]
  167. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [Crossref]
  168. B. J. Roxworthy, A. M. Bhuiya, V. V. G. K. Inavalli, H. Chen, and K. C. Toussaint, “Multifunctional plasmonic film for recording near-field optical intensity,” Nano Lett. 14, 4687–4693 (2014).
    [Crossref]
  169. X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref]
  170. H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
    [Crossref]
  171. G. Mittelman, A. Kribus, and A. Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manag. 48, 2481–2490 (2007).
    [Crossref]
  172. Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
    [Crossref]
  173. A. A. Vyshnevyy and D. Y. Fedyanin, “Self-heating and cooling of active plasmonic waveguides,” ACS Photon. 3, 51–57 (2016).
    [Crossref]
  174. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
    [Crossref]
  175. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
    [Crossref]
  176. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
    [Crossref]
  177. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
    [Crossref]
  178. P. A. Atanasov, H. Takada, N. N. Nedyalkov, and M. Obara, “Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton,” Appl. Surf. Sci. 253, 8304–8308 (2007).
    [Crossref]
  179. L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
    [Crossref]
  180. A. Zillohu, N. Alissawi, R. Abdelaziz, and M. Elbahri, “Thermo-plasmonics for localized graphitization and welding of polymeric nanofibers,” Materials 7, 323–332 (2014).
    [Crossref]
  181. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7, 3523–3527 (2007).
    [Crossref]
  182. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
    [Crossref]
  183. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
    [Crossref]
  184. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
    [Crossref]
  185. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
    [Crossref]
  186. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
    [Crossref]
  187. N. S. Abadeer and C. J. Murphy, “Recent progress in cancer thermal therapy using gold nanoparticles,” J. Phys. Chem. C 120, 4691–4716 (2016).
    [Crossref]
  188. C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
    [Crossref]
  189. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41, 1842–1851 (2008).
    [Crossref]
  190. V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37, 219–226 (2005).
    [Crossref]
  191. A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
    [Crossref]
  192. Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt. Express 25, 15093–15107 (2017).
    [Crossref]
  193. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811–817 (2010).
    [Crossref]
  194. K. C. Toussaint, B. J. Roxworthy, H. Chen, A. M. Bhuiya, and Q. Ding, “Plasmonic nanoantennas: from nanotweezers to plasmonic photography,” Opt. Photon. News 26(6), 24–31 (2015).
    [Crossref]
  195. L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
    [Crossref]
  196. S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
    [Crossref]
  197. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
    [Crossref]
  198. O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
    [Crossref]
  199. X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
    [Crossref]
  200. C. Loo, A. Lowery, R. Drezek, N. J. Halas, and J. L. West, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2006).
    [Crossref]
  201. J. Wang, X. Yu, S. V. Boriskina, and B. M. Reinhard, “Quantification of differential ErbB1 and ErbB2 cell surface expression and spatial nanoclustering through plasmon coupling,” Nano Lett. 12, 3231–3237 (2012).
    [Crossref]
  202. B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
    [Crossref]
  203. J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
    [Crossref]
  204. J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
    [Crossref]
  205. A. Ward and D. A. Broido, “Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge,” Phys. Rev. B 81, 85205 (2010).
    [Crossref]
  206. K. Esfarjani, G. Chen, and H. Stokes, “Heat transport in silicon from first-principles calculations,” Phys. Rev. B 84, 085204 (2011).
    [Crossref]
  207. Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol. 10, 701–706 (2015).
    [Crossref]
  208. L. Zeng and G. Chen, “Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate,” J. Appl. Phys. 116, 064307 (2014).
    [Crossref]
  209. K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
    [Crossref]
  210. A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
    [Crossref]
  211. S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
    [Crossref]
  212. M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
    [Crossref]
  213. M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
    [Crossref]
  214. W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96, 94–97 (2010).
  215. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
    [Crossref]
  216. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
    [Crossref]
  217. X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38, 483–485 (2013).
    [Crossref]
  218. H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).
  219. G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013).
    [Crossref]
  220. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97, 021111 (2010).
    [Crossref]
  221. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
    [Crossref]
  222. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230–1232 (2011).
    [Crossref]
  223. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
    [Crossref]
  224. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
    [Crossref]
  225. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
    [Crossref]
  226. M. Lambsdorff, C. Diirnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Zeitschrift fur Phys. B 64, 409–416 (1986).
    [Crossref]
  227. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  228. J. B. Khurgin, G. Sun, W. T. Chen, W.-Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
    [Crossref]
  229. R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
    [Crossref]
  230. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
    [Crossref]
  231. Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
    [Crossref]
  232. T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87, 365–379 (2010).
    [Crossref]
  233. R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
    [Crossref]
  234. A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
    [Crossref]
  235. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10, 911–921 (2011).
    [Crossref]
  236. M. J. Kale, T. Avanesian, and P. Christopher, “Direct photocatalysis by plasmonic nanostructures,” ACS Catal. 4, 116–128 (2014).
    [Crossref]
  237. H. H. Wei, H. I-Kai, A. Bushmaker, R. Kumar, J. Theiss, and S. B. Cronin, “Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition,” Nano Lett. 8, 3278–3282 (2008).
    [Crossref]
  238. W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett. 10, 1314–1318 (2010).
    [Crossref]
  239. C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
    [Crossref]
  240. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
    [Crossref]
  241. Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
    [Crossref]
  242. K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
    [Crossref]
  243. O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
    [Crossref]
  244. M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).
  245. Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
    [Crossref]
  246. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
    [Crossref]
  247. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
    [Crossref]
  248. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
    [Crossref]
  249. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination,” J. Phys. Chem. C 118, 4890–4898 (2014).
    [Crossref]
  250. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17, 2538–2556 (2009).
    [Crossref]
  251. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
    [Crossref]
  252. D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
    [Crossref]
  253. S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
    [Crossref]
  254. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10, 393–398 (2016).
    [Crossref]
  255. G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185, 275–301 (1860).
    [Crossref]
  256. M. Planck, The Theory of Heat Radiation (Dover, 1914).
  257. L. Landau and E. Lifshitz, Statistical Physics, Part 1 (Institute of Physical Problems, USSR Academy of Sciences, 1980).
  258. E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
    [Crossref]
  259. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
    [Crossref]
  260. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
    [Crossref]
  261. J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721–2728 (2015).
    [Crossref]
  262. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
    [Crossref]
  263. N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8, 10953–10962 (2014).
    [Crossref]
  264. N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
    [Crossref]
  265. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
    [Crossref]
  266. S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
    [Crossref]
  267. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92, 233102 (2008).
    [Crossref]
  268. C.-M. Wang and D.-Y. Feng, “Omnidirectional thermal emitter based on plasmonic nanoantenna arrays,” Opt. Express 22, 1313–1318 (2014).
    [Crossref]
  269. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
    [Crossref]
  270. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
    [Crossref]
  271. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref]
  272. S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
    [Crossref]
  273. D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
    [Crossref]
  274. T.-H. Chuang, M.-W. Tsai, Y.-T. Chang, and S.-C. Lee, “Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173128 (2006).
    [Crossref]
  275. H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
    [Crossref]
  276. W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 63107 (2016).
    [Crossref]
  277. P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23, A1533–A1540 (2015).
    [Crossref]
  278. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
    [Crossref]
  279. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
    [Crossref]
  280. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
    [Crossref]
  281. A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
    [Crossref]
  282. O. Sandus, “A review of emission polarization,” Appl. Opt. 4, 1634–1642 (1965).
    [Crossref]
  283. G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
    [Crossref]
  284. Y. Öhman, “Polarized thermal emission from narrow tungsten filaments,” Nature 192, 254 (1961).
    [Crossref]
  285. K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19, 23475–23482 (2011).
    [Crossref]
  286. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
    [Crossref]
  287. S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, 1959).
  288. B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: from theory to experiment,” AIP Adv. 5, 53503 (2015).
    [Crossref]
  289. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
    [Crossref]
  290. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
    [Crossref]
  291. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
    [Crossref]
  292. A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63, 205404 (2001).
    [Crossref]
  293. M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
    [Crossref]
  294. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  295. Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
    [Crossref]
  296. A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77, 75125 (2008).
    [Crossref]
  297. B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
    [Crossref]
  298. B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
    [Crossref]
  299. S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, “Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
    [Crossref]
  300. P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 35431 (2008).
    [Crossref]
  301. J. L. Pan, “Radiative transfer over small distances from a heated metal,” Opt. Lett. 25, 369–371 (2000).
    [Crossref]
  302. Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
    [Crossref]
  303. A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
    [Crossref]
  304. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
    [Crossref]

2017 (4)

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
[Crossref]

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt. Express 25, 15093–15107 (2017).
[Crossref]

2016 (21)

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6, 2776–2802 (2016).
[Crossref]

A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref]

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 63107 (2016).
[Crossref]

N. S. Abadeer and C. J. Murphy, “Recent progress in cancer thermal therapy using gold nanoparticles,” J. Phys. Chem. C 120, 4691–4716 (2016).
[Crossref]

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10, 393–398 (2016).
[Crossref]

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical-thermal antennas for enhanced light focusing and local temperature control,” ACS Photon. 3, 1714–1722 (2016).
[Crossref]

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2016).
[Crossref]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

A. A. Vyshnevyy and D. Y. Fedyanin, “Self-heating and cooling of active plasmonic waveguides,” ACS Photon. 3, 51–57 (2016).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

S. B. Dugdale, “Life on the edge: a beginner’s guide to the Fermi surface,” Phys. Scripta 91, 053009 (2016).
[Crossref]

J. Chae, B. Lahiri, and A. Centrone, “Engineering near-field SEIRA enhancements in plasmonic resonators,” ACS Photon. 3, 87–95 (2016).
[Crossref]

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

2015 (37)

A. M. Dubrovkin, J. Tao, X. Chao Yu, N. I. Zheludev, and Q. Jie Wang, “The reduction of surface plasmon losses in quasi-suspended graphene,” Sci. Rep. 5, 9837 (2015).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140, 386–406 (2015).
[Crossref]

A. Ziashahabi and R. Poursalehi, “The effects of surface oxidation and interparticle coupling on surface plasmon resonance properties of aluminum nanoparticles as a UV plasmonic material,” Procedia Mater. Sci. 11, 434–437 (2015).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref]

G. V. Naik and J. A. Dionne, “Photon upconversion with hot carriers in plasmonic systems,” Appl. Phys. Lett. 107, 133902 (2015).
[Crossref]

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE 9608, 960816 (2015).
[Crossref]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref]

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films,” Photonics 2, 659–683 (2015).
[Crossref]

Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties,” J. Phys. Chem. Lett. 6, 2056–2064 (2015).
[Crossref]

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

J. B. Khurgin, G. Sun, W. T. Chen, W.-Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays,” Nanophotonics 4, 250–260 (2015).
[Crossref]

Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol. 10, 701–706 (2015).
[Crossref]

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

K. C. Toussaint, B. J. Roxworthy, H. Chen, A. M. Bhuiya, and Q. Ding, “Plasmonic nanoantennas: from nanotweezers to plasmonic photography,” Opt. Photon. News 26(6), 24–31 (2015).
[Crossref]

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: from theory to experiment,” AIP Adv. 5, 53503 (2015).
[Crossref]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23, A1418–A1433 (2015).
[Crossref]

P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23, A1533–A1540 (2015).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721–2728 (2015).
[Crossref]

2014 (29)

C.-M. Wang and D.-Y. Feng, “Omnidirectional thermal emitter based on plasmonic nanoantenna arrays,” Opt. Express 22, 1313–1318 (2014).
[Crossref]

N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22, 11236–11243 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
[Crossref]

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8, 10953–10962 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
[Crossref]

L. Zeng and G. Chen, “Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate,” J. Appl. Phys. 116, 064307 (2014).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

M. J. Kale, T. Avanesian, and P. Christopher, “Direct photocatalysis by plasmonic nanostructures,” ACS Catal. 4, 116–128 (2014).
[Crossref]

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination,” J. Phys. Chem. C 118, 4890–4898 (2014).
[Crossref]

D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref]

R. Badugu, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure,” Anal. Biochem. 445, 1–13 (2014).
[Crossref]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115, 134301 (2014).
[Crossref]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8, 7630–7638 (2014).
[Crossref]

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
[Crossref]

A. Zillohu, N. Alissawi, R. Abdelaziz, and M. Elbahri, “Thermo-plasmonics for localized graphitization and welding of polymeric nanofibers,” Materials 7, 323–332 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, V. V. G. K. Inavalli, H. Chen, and K. C. Toussaint, “Multifunctional plasmonic film for recording near-field optical intensity,” Nano Lett. 14, 4687–4693 (2014).
[Crossref]

A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Optical absorption and scattering spectroscopies of single nano-objects,” Chem. Soc. Rev. 43, 3921–3956 (2014).
[Crossref]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

T. Stauber, “Plasmonics in Dirac systems: from graphene to topological insulators,” J. Phys. 26, 123201 (2014).
[Crossref]

2013 (30)

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15, 23011 (2013).
[Crossref]

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

P. J. Schuck, “Nanoimaging: hot electrons go through the barrier,” Nat. Nanotechnol. 8, 799–800 (2013).
[Crossref]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25, 115–119 (2013).
[Crossref]

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7, 4470–4478 (2013).
[Crossref]

M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38, 483–485 (2013).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref]

Q. Wang, H. Zhao, X. Du, W. Zhang, M. Qiu, and Q. Li, “Hybrid photonic-plasmonic molecule based on metal/Si disks,” Opt. Express 21, 11037–11047 (2013).
[Crossref]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21, 32086–32098 (2013).
[Crossref]

2012 (29)

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20, 12155–12165 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, “Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
[Crossref]

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

J. Wang, X. Yu, S. V. Boriskina, and B. M. Reinhard, “Quantification of differential ErbB1 and ErbB2 cell surface expression and spatial nanoclustering through plasmon coupling,” Nano Lett. 12, 3231–3237 (2012).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6, 951–960 (2012).
[Crossref]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
[Crossref]

A. Tsiatmas, V. A. Fedotov, F. J. García de Abajo, and N. I. Zheludev, “Low-loss terahertz superconducting plasmonics,” New J. Phys. 14, 115006 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 47401 (2012).
[Crossref]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101, 073905 (2012).
[Crossref]

M. Sun and H. Xu, “A novel application of plasmonics: plasmon-driven surface-catalyzed reactions,” Small 8, 2777–2786 (2012).
[Crossref]

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[Crossref]

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
[Crossref]

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[Crossref]

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33, 863–871 (2012).
[Crossref]

M. Svedendahl and M. Käll, “Fano interference between localized plasmons and interface reflections,” ACS Nano 6, 7533–7539 (2012).
[Crossref]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).
[Crossref]

2011 (25)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C 115, 4578–4583 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

J. Wang, S. V. Boriskina, H. Wang, and B. M. Reinhard, “Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling,” ACS Nano 5, 6619–6628 (2011).
[Crossref]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

C. Mouhot and C. Villani, “On Landau damping,” Acta Math. 207, 29–201 (2011).
[Crossref]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99, 211106 (2011).
[Crossref]

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
[Crossref]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 73701 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref]

M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater. 10, 382–388 (2011).
[Crossref]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10, 911–921 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5, 2831–2838 (2011).
[Crossref]

K. Esfarjani, G. Chen, and H. Stokes, “Heat transport in silicon from first-principles calculations,” Phys. Rev. B 84, 085204 (2011).
[Crossref]

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
[Crossref]

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230–1232 (2011).
[Crossref]

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024 (2011).
[Crossref]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19, 22113–22124 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19, 22305–22315 (2011).
[Crossref]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19, 23475–23482 (2011).
[Crossref]

2010 (26)

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
[Crossref]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97, 021111 (2010).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
[Crossref]

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96, 94–97 (2010).

A. Ward and D. A. Broido, “Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge,” Phys. Rev. B 81, 85205 (2010).
[Crossref]

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811–817 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87, 365–379 (2010).
[Crossref]

W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett. 10, 1314–1318 (2010).
[Crossref]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20, 1910–1916 (2010).
[Crossref]

P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
[Crossref]

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 41570 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375–378 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

2009 (22)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref]

S. Das Sarma and E. H. Hwang, “Collective modes of the massless Dirac plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref]

A. Hill, S. A. Mikhailov, and K. Ziegler, “Dielectric function and plasmons in graphene,” Europhys. Lett. 87, 27005 (2009).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[Crossref]

N. J. Halas, “Connecting the dots: reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. USA 106, 3643–3644 (2009)..
[Crossref]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[Crossref]

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17, 2538–2556 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[Crossref]

G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
[Crossref]

2008 (11)

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
[Crossref]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92, 233102 (2008).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 35431 (2008).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77, 75125 (2008).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41, 1842–1851 (2008).
[Crossref]

H. H. Wei, H. I-Kai, A. Bushmaker, R. Kumar, J. Theiss, and S. B. Cronin, “Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition,” Nano Lett. 8, 3278–3282 (2008).
[Crossref]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 43903 (2008).
[Crossref]

2007 (11)

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

G. Mittelman, A. Kribus, and A. Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manag. 48, 2481–2490 (2007).
[Crossref]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7, 3523–3527 (2007).
[Crossref]

P. A. Atanasov, H. Takada, N. N. Nedyalkov, and M. Obara, “Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton,” Appl. Surf. Sci. 253, 8304–8308 (2007).
[Crossref]

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

2006 (11)

X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref]

C. Loo, A. Lowery, R. Drezek, N. J. Halas, and J. L. West, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2006).
[Crossref]

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

T.-H. Chuang, M.-W. Tsai, Y.-T. Chang, and S.-C. Lee, “Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173128 (2006).
[Crossref]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
[Crossref]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref]

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[Crossref]

2005 (5)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

G. Manfredi, “How to model quantum plasmas,” Fields Inst. Commun. 46, 263–287 (2005).

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37, 219–226 (2005).
[Crossref]

2003 (2)

S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

2002 (3)

M. Moskovits, I. Srnová-Šloufová, and B. Vlčková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

2001 (2)

A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63, 205404 (2001).
[Crossref]

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[Crossref]

2000 (1)

1996 (1)

G. Chen, “Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles,” J. Heat Transfer 118, 539–545 (1996).
[Crossref]

1993 (1)

A. Bendib, “Dielectric functions for the Vlasov–Landau equation,” Phys. Rev. E 47, 3598–3606 (1993).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

1987 (1)

L. Hoddeson, G. Baym, and M. Eckert, “The development of the quantum-mechanical electron theory of metals: 1928–1933,” Rev. Mod. Phys. 59, 287–327 (1987).
[Crossref]

1986 (2)

J. R. Jasperse and B. Basu, “The dielectric function for the Balescu–Lenard–Poisson kinetic equations,” Phys. Fluids 29, 110–121 (1986).
[Crossref]

M. Lambsdorff, C. Diirnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Zeitschrift fur Phys. B 64, 409–416 (1986).
[Crossref]

1983 (1)

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[Crossref]

1982 (2)

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[Crossref]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

1965 (1)

1962 (1)

D. J. Roaf, “The Fermi surfaces of copper, silver and gold II. Calculation of the Fermi surfaces,” Philos. Trans. R. Soc. London A 255, 135–152 (1962).
[Crossref]

1961 (2)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Y. Öhman, “Polarized thermal emission from narrow tungsten filaments,” Nature 192, 254 (1961).
[Crossref]

1957 (2)

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).
[Crossref]

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

1950 (1)

L. D. Landau and V. L. Ginzburg, “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).

1946 (1)

L. Landau, “On the vibration of the electronic plasma,” J. Phys. USSR 10, 25–34 (1946).

1860 (1)

G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185, 275–301 (1860).
[Crossref]

Abadeer, N. S.

N. S. Abadeer and C. J. Murphy, “Recent progress in cancer thermal therapy using gold nanoparticles,” J. Phys. Chem. C 120, 4691–4716 (2016).
[Crossref]

Abadía, N.

Abdelaziz, R.

A. Zillohu, N. Alissawi, R. Abdelaziz, and M. Elbahri, “Thermo-plasmonics for localized graphitization and welding of polymeric nanofibers,” Materials 7, 323–332 (2014).
[Crossref]

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Adamo, G.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref]

Adams, D. C.

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Adibi, A.

Adleman, J. R.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[Crossref]

Ahn, J.-H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Ahn, W.

W. Ahn, Y. Hong, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays,” Nanophotonics 4, 250–260 (2015).
[Crossref]

Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties,” J. Phys. Chem. Lett. 6, 2056–2064 (2015).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7, 4470–4478 (2013).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6, 951–960 (2012).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[Crossref]

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Akimov, I. A.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

Alemi, A. A.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

Ali, Z.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Alissawi, N.

A. Zillohu, N. Alissawi, R. Abdelaziz, and M. Elbahri, “Thermo-plasmonics for localized graphitization and welding of polymeric nanofibers,” Materials 7, 323–332 (2014).
[Crossref]

Alivisatos, A. P.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Altug, H.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Andio, M.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Andreani, L. C.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Anoma, M. A.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Apell, S. P.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref]

Arab, A.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Arita, M.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Arnold, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Artzi, N.

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

Astratov, V. N.

Atanasov, P. A.

P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
[Crossref]

P. A. Atanasov, H. Takada, N. N. Nedyalkov, and M. Obara, “Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton,” Appl. Surf. Sci. 253, 8304–8308 (2007).
[Crossref]

Atwater, H. A.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115, 134301 (2014).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
[Crossref]

Avanesian, T.

M. J. Kale, T. Avanesian, and P. Christopher, “Direct photocatalysis by plasmonic nanostructures,” ACS Catal. 4, 116–128 (2014).
[Crossref]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Ayala-Orozco, C.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
[Crossref]

Aykol, M.

W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett. 10, 1314–1318 (2010).
[Crossref]

Ayzatskiy, M. I.

S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.

Ayzatsky, M. I.

V. N. Boriskin, M. I. Ayzatsky, S. V. Boriskina, Y. P. Machehin, and A. Semenov, “Theoretical and experimental study of temperature-dependent spectral properties of multi-layer metal-dielectric nano-film structures,” in 9th International Conference on Transparent Optical Networks (2007), Vol. 4.

Azad, A. K.

Bachmann, D.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Badugu, R.

R. Badugu, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure,” Anal. Biochem. 445, 1–13 (2014).
[Crossref]

Bae, K.

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination,” J. Phys. Chem. C 118, 4890–4898 (2014).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

Balamurugan, S.

S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
[Crossref]

Balamurugan, S. S.

S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
[Crossref]

Balin, I.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

Ballarini, D.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Bansal, N.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Bao, J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Bao, K.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[Crossref]

Bardeen, J.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).
[Crossref]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7, 3523–3527 (2007).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Basov, D. N.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref]

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Basu, B.

J. R. Jasperse and B. Basu, “The dielectric function for the Balescu–Lenard–Poisson kinetic equations,” Phys. Fluids 29, 110–121 (1986).
[Crossref]

Bayer, M.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

Baym, G.

L. Hoddeson, G. Baym, and M. Eckert, “The development of the quantum-mechanical electron theory of metals: 1928–1933,” Rev. Mod. Phys. 59, 287–327 (1987).
[Crossref]

Beard, M. C.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Beck, F. J.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[Crossref]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Belarouci, A.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
[Crossref]

Belotelov, V. I.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

Belov, P. A.

Bendib, A.

A. Bendib, “Dielectric functions for the Vlasov–Landau equation,” Phys. Rev. E 47, 3598–3606 (1993).
[Crossref]

Benisty, H.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Bermel, P.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23, A1533–A1540 (2015).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Bernadin, T.

Bernard, A.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

Bernardi, M.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref]

Bernardi, M. P.

M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref]

Besner, S.

D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Bhuiya, A. M.

K. C. Toussaint, B. J. Roxworthy, H. Chen, A. M. Bhuiya, and Q. Ding, “Plasmonic nanoantennas: from nanotweezers to plasmonic photography,” Opt. Photon. News 26(6), 24–31 (2015).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, V. V. G. K. Inavalli, H. Chen, and K. C. Toussaint, “Multifunctional plasmonic film for recording near-field optical intensity,” Nano Lett. 14, 4687–4693 (2014).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
[Crossref]

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Bimonte, G.

G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
[Crossref]

Birkhold, S.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Blanchard, R.

Blandre, E.

M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref]

Bogy, D. B.

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

Bohren, C. F.

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. 98.

Boltasseva, A.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6, 2776–2802 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721–2728 (2015).
[Crossref]

J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Bonevich, J. E.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Bonod, N.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref]

Boriskin, V. N.

S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.

V. N. Boriskin, M. I. Ayzatsky, S. V. Boriskina, Y. P. Machehin, and A. Semenov, “Theoretical and experimental study of temperature-dependent spectral properties of multi-layer metal-dielectric nano-film structures,” in 9th International Conference on Transparent Optical Networks (2007), Vol. 4.

Boriskina, S.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films,” Photonics 2, 659–683 (2015).
[Crossref]

Boriskina, S. V.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
[Crossref]

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical-thermal antennas for enhanced light focusing and local temperature control,” ACS Photon. 3, 1714–1722 (2016).
[Crossref]

P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23, A1533–A1540 (2015).
[Crossref]

Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties,” J. Phys. Chem. Lett. 6, 2056–2064 (2015).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays,” Nanophotonics 4, 250–260 (2015).
[Crossref]

S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE 9608, 960816 (2015).
[Crossref]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25, 115–119 (2013).
[Crossref]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7, 4470–4478 (2013).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6, 951–960 (2012).
[Crossref]

J. Wang, X. Yu, S. V. Boriskina, and B. M. Reinhard, “Quantification of differential ErbB1 and ErbB2 cell surface expression and spatial nanoclustering through plasmon coupling,” Nano Lett. 12, 3231–3237 (2012).
[Crossref]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[Crossref]

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C 115, 4578–4583 (2011).
[Crossref]

J. Wang, S. V. Boriskina, H. Wang, and B. M. Reinhard, “Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling,” ACS Nano 5, 6619–6628 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19, 22305–22315 (2011).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 73701 (2011).
[Crossref]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19, 22113–22124 (2011).
[Crossref]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[Crossref]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006).
[Crossref]

S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.

V. N. Boriskin, M. I. Ayzatsky, S. V. Boriskina, Y. P. Machehin, and A. Semenov, “Theoretical and experimental study of temperature-dependent spectral properties of multi-layer metal-dielectric nano-film structures,” in 9th International Conference on Transparent Optical Networks (2007), Vol. 4.

S. V. Boriskina and N. Zheludev, Singular and Chiral Nanoplasmonics (Stanford, 2014).

S. V. Boriskina, Plasmonics in Metal Nanostructures, T. V. Shahbazyan and M. I. Stockman, eds. (Springer, 2013).

S. V. Boriskina, Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds. (Springer, 2010), Vol. 156.

Borselli, M.

Boual, S.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Bourgoyne, C.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

Boutami, S.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Boyd, D. A.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[Crossref]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Brahlek, M.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Braun, P. V.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20, 1910–1916 (2010).
[Crossref]

Bremond, F.

Bristow, A. D.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Broido, D. A.

A. Ward and D. A. Broido, “Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge,” Phys. Rev. B 81, 85205 (2010).
[Crossref]

Brongersma, M.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7, 3523–3527 (2007).
[Crossref]

Bronstein, N. D.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

Bushmaker, A.

H. H. Wei, H. I-Kai, A. Bushmaker, R. Kumar, J. Theiss, and S. B. Cronin, “Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition,” Nano Lett. 8, 3278–3282 (2008).
[Crossref]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Cai, B.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

Cai, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10, 393–398 (2016).
[Crossref]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Caldwell, J. D.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

Callard, S.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
[Crossref]

Callen, J. D.

J. D. Callen, Fundamentals of Plasma Physics (University of Wisconsin, 2006).

Calvani, P.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7, 3523–3527 (2007).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19, 22113–22124 (2011).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Cappellin, L.

G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
[Crossref]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[Crossref]

Carminati, R.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Carpenter, M. A.

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8, 10953–10962 (2014).
[Crossref]

Carretero-Palacios, S.

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
[Crossref]

Carugno, G.

G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
[Crossref]

Castro Neto, A. H.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Catchpole, K.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Catchpole, K. R.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101, 073905 (2012).
[Crossref]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[Crossref]

Celanovic, I.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

Centrone, A.

J. Chae, B. Lahiri, and A. Centrone, “Engineering near-field SEIRA enhancements in plasmonic resonators,” ACS Photon. 3, 87–95 (2016).
[Crossref]

Cetinkaya, M.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

Cha, J. J.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

Cha, S.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Chae, B. G.

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Chae, J.

J. Chae, B. Lahiri, and A. Centrone, “Engineering near-field SEIRA enhancements in plasmonic resonators,” ACS Photon. 3, 87–95 (2016).
[Crossref]

Chainani, A.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Chaisakul, P.

Chalabi, H.

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Chamanzar, M.

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Chan, T.-S.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Chan, W. R.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Chan, Y.-C.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Chang, H.-C.

H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
[Crossref]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Chang, Y.-T.

T.-H. Chuang, M.-W. Tsai, Y.-T. Chang, and S.-C. Lee, “Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173128 (2006).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Chao Yu, X.

A. M. Dubrovkin, J. Tao, X. Chao Yu, N. I. Zheludev, and Q. Jie Wang, “The reduction of surface plasmon losses in quasi-suspended graphene,” Sci. Rep. 5, 9837 (2015).
[Crossref]

Chapler, B.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

Chapuis, P.-O.

M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 35431 (2008).
[Crossref]

Chen, C.-H.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Chen, C.-T.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Chen, C.-W.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Chen, G.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical-thermal antennas for enhanced light focusing and local temperature control,” ACS Photon. 3, 1714–1722 (2016).
[Crossref]

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE 9608, 960816 (2015).
[Crossref]

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films,” Photonics 2, 659–683 (2015).
[Crossref]

Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol. 10, 701–706 (2015).
[Crossref]

L. Zeng and G. Chen, “Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate,” J. Appl. Phys. 116, 064307 (2014).
[Crossref]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, “Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
[Crossref]

K. Esfarjani, G. Chen, and H. Stokes, “Heat transport in silicon from first-principles calculations,” Phys. Rev. B 84, 085204 (2011).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77, 75125 (2008).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
[Crossref]

G. Chen, “Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles,” J. Heat Transfer 118, 539–545 (1996).
[Crossref]

S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.

Chen, H.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

K. C. Toussaint, B. J. Roxworthy, H. Chen, A. M. Bhuiya, and Q. Ding, “Plasmonic nanoantennas: from nanotweezers to plasmonic photography,” Opt. Photon. News 26(6), 24–31 (2015).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, V. V. G. K. Inavalli, H. Chen, and K. C. Toussaint, “Multifunctional plasmonic film for recording near-field optical intensity,” Nano Lett. 14, 4687–4693 (2014).
[Crossref]

Chen, H.-H.

H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
[Crossref]

Chen, H.-T.

Chen, J.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811–817 (2010).
[Crossref]

Chen, K.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97, 021111 (2010).
[Crossref]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Chen, S.

Chen, W. T.

J. B. Khurgin, G. Sun, W. T. Chen, W.-Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Chen, X.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
[Crossref]

Chen, Y.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Chen, Z.

Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt. Express 25, 15093–15107 (2017).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

Cheng, H.

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Chevalier, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
[Crossref]

Chevrier, J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

Chiloyan, V.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films,” Photonics 2, 659–683 (2015).
[Crossref]

Cho, S. K.

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Choi, H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Choi, J.-W.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Chong, Y.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
[Crossref]

Chou, J. B.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

Chow, T. T.

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87, 365–379 (2010).
[Crossref]

Christopher, P.

M. J. Kale, T. Avanesian, and P. Christopher, “Direct photocatalysis by plasmonic nanostructures,” ACS Catal. 4, 116–128 (2014).
[Crossref]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10, 911–921 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

T.-H. Chuang, M.-W. Tsai, Y.-T. Chang, and S.-C. Lee, “Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173128 (2006).
[Crossref]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41, 1842–1851 (2008).
[Crossref]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

Collins, K. C.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

Conde, J.

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

Connor, S. T.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

Cooper, L. N.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).
[Crossref]

Cortes, C. L.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
[Crossref]

Costantini, D.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Coulombe, S.

Coutrot, A.-L.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Cronin, S. B.

W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett. 10, 1314–1318 (2010).
[Crossref]

H. H. Wei, H. I-Kai, A. Bushmaker, R. Kumar, J. Theiss, and S. B. Cronin, “Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition,” Nano Lett. 8, 3278–3282 (2008).
[Crossref]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Crut, A.

A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Optical absorption and scattering spectroscopies of single nano-objects,” Chem. Soc. Rev. 43, 3921–3956 (2014).
[Crossref]

Cuevas, J. C.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Cui, Y.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

Cuscuná, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Cushing, S. K.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140, 386–406 (2015).
[Crossref]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

D’Agostino, S.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Dagenais, M.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Dahan, N.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Dal Negro, L.

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Das, G.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Das Sarma, S.

S. Das Sarma and E. H. Hwang, “Collective modes of the massless Dirac plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
[Crossref]

Dayal, G.

Dayan, A.

G. Mittelman, A. Kribus, and A. Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manag. 48, 2481–2490 (2007).
[Crossref]

De Angelis, F.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

De Giorgi, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

De Luca, A.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

de Waele, R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[Crossref]

Del Fatti, N.

A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Optical absorption and scattering spectroscopies of single nano-objects,” Chem. Soc. Rev. 43, 3921–3956 (2014).
[Crossref]

Della Sala, F.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Demirel, M. C.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 73701 (2011).
[Crossref]

Deng, T.

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

Dennis, M. R.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
[Crossref]

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Descrovi, E.

R. Badugu, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure,” Anal. Biochem. 445, 1–13 (2014).
[Crossref]

Desyatnikov, A.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
[Crossref]

Devilez, A.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref]

Dewalt, C. J.

Dharmalingam, G.

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8, 10953–10962 (2014).
[Crossref]

Dholakia, K.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 41570 (2010).
[Crossref]

Di Fabrizio, E.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Di Gaspare, A.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Di Pietro, P.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Di Ventra, M.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Diirnfeld, C.

M. Lambsdorff, C. Diirnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Zeitschrift fur Phys. B 64, 409–416 (1986).
[Crossref]

Ding, Q.

K. C. Toussaint, B. J. Roxworthy, H. Chen, A. M. Bhuiya, and Q. Ding, “Plasmonic nanoantennas: from nanotweezers to plasmonic photography,” Opt. Photon. News 26(6), 24–31 (2015).
[Crossref]

Dionne, J.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Dionne, J. A.

G. V. Naik and J. A. Dionne, “Photon upconversion with hot carriers in plasmonic systems,” Appl. Phys. Lett. 107, 133902 (2015).
[Crossref]

Dolores-Calzadilla, V.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Dominici, L.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Dong, A.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Dorfmuller, J.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

Dresselhaus, M. S.

Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol. 10, 701–706 (2015).
[Crossref]

Drezek, R.

C. Loo, A. Lowery, R. Drezek, N. J. Halas, and J. L. West, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2006).
[Crossref]

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Driscoll, T.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Drude, P.

P. Drude, Lehrbuch Der Optik (Trapeza, 1906).

Du, X.

Du, Y.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

Duan, H.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

Duan, X.

Dubrovkin, A. M.

A. M. Dubrovkin, J. Tao, X. Chao Yu, N. I. Zheludev, and Q. Jie Wang, “The reduction of surface plasmon losses in quasi-suspended graphene,” Sci. Rep. 5, 9837 (2015).
[Crossref]

Duck, B.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

Dugdale, S. B.

S. B. Dugdale, “Life on the edge: a beginner’s guide to the Fermi surface,” Phys. Scripta 91, 053009 (2016).
[Crossref]

Dupre, O.

M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375–378 (2010).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Eckert, M.

L. Hoddeson, G. Baym, and M. Eckert, “The development of the quantum-mechanical electron theory of metals: 1928–1933,” Rev. Mod. Phys. 59, 287–327 (1987).
[Crossref]

Elazar, J. M.

A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

Elbahri, M.

A. Zillohu, N. Alissawi, R. Abdelaziz, and M. Elbahri, “Thermo-plasmonics for localized graphitization and welding of polymeric nanofibers,” Materials 7, 323–332 (2014).
[Crossref]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).
[Crossref]

Elliott, A. M.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

El-Naggar, M. Y.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[Crossref]

El-sayed, I. H.

X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref]

El-sayed, M. A.

X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Emboras, A.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Esfarjani, K.

K. Esfarjani, G. Chen, and H. Stokes, “Heat transport in silicon from first-principles calculations,” Phys. Rev. B 84, 085204 (2011).
[Crossref]

Espiau de Lamaëstre, R.

Esposito, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref]

Facchetti, A.

M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater. 10, 382–388 (2011).
[Crossref]

Fan, H.

Fan, J. A.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

Fan, K.

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Fan, S.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Fang, N. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Fedorov, D. V.

M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
[Crossref]

Fedoruk, M.

M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
[Crossref]

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Fedosejevs, R.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Fedotov, V. A.

A. Tsiatmas, V. A. Fedotov, F. J. García de Abajo, and N. I. Zheludev, “Low-loss terahertz superconducting plasmonics,” New J. Phys. 14, 115006 (2012).
[Crossref]

Fedyanin, D. Y.

A. A. Vyshnevyy and D. Y. Fedyanin, “Self-heating and cooling of active plasmonic waveguides,” ACS Photon. 3, 51–57 (2016).
[Crossref]

Fei, Z.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Feist, J.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Feldmann, J.

M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
[Crossref]

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Fell, C.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

Feng, D.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
[Crossref]

Feng, D.-Y.

Feng, K.

Feng, R.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Fernández-Domínguez, A. I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Fernández-Hurtado, V.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Feronti, C.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
[Crossref]

Fiorino, A.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: from theory to experiment,” AIP Adv. 5, 53503 (2015).
[Crossref]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Fitrakis, E. P.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 43903 (2008).
[Crossref]

Fogler, M. M.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Francoeur, M.

M. P. Bernardi, O. Dupre, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref]

Freude, W.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Frischwasser, K.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19, 23475–23482 (2011).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
[Crossref]

Fromherz, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Furchi, M. M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Galitovskaya, E. N.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37, 219–226 (2005).
[Crossref]

Galli, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Ganjeh, Y.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

A. Tsiatmas, V. A. Fedotov, F. J. García de Abajo, and N. I. Zheludev, “Low-loss terahertz superconducting plasmonics,” New J. Phys. 14, 115006 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 47401 (2012).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Garcia-Vidal, F. J.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Garnett, E. C.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Genevet, P.

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Gershon, T.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Ghasemi, H.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

Gidding, M.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811–817 (2010).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Gigli, G.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Giliberti, V.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Ginzburg, V. L.

L. D. Landau and V. L. Ginzburg, “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).

Giorgianni, F.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Glaus, C.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811–817 (2010).
[Crossref]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Gobin, M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Goldflam, M. D.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

Goodwin, D. G.

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[Crossref]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[Crossref]

Gopal, A. V.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[Crossref]

Gopinath, A.

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[Crossref]

Gorbach, A. V.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 43903 (2008).
[Crossref]

Gordon, J. M.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[Crossref]

Gorodetski, Y.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
[Crossref]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Gradhand, M.

M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
[Crossref]

Grady, N.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Green, M. A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Greengard, L.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006).
[Crossref]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Greffet, J.-J.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 35431 (2008).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Greyson Christoforo, M.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

Gu, M.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7, 3523–3527 (2007).
[Crossref]

Guider, R.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Guler, U.

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6, 2776–2802 (2016).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721–2728 (2015).
[Crossref]

J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[Crossref]

Guo, Y.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
[Crossref]

Györffy, B. L.

M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
[Crossref]

Haffner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Hafner, J. H.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

Hägglund, C.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref]

Halas, N. J.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
[Crossref]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. J. Halas, “Connecting the dots: reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. USA 106, 3643–3644 (2009)..
[Crossref]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41, 1842–1851 (2008).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

C. Loo, A. Lowery, R. Drezek, N. J. Halas, and J. L. West, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2006).
[Crossref]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
[Crossref]

Han, D.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20, 1910–1916 (2010).
[Crossref]

Han, K. J.

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Han, S. E.

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Hartland, G. V.

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
[Crossref]

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Hashemi, S. M. H.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Hasman, E.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19, 23475–23482 (2011).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
[Crossref]

Hawkes, E. R.

Hawlader, M. N. A.

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[Crossref]

Hazle, J. D.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

He, J.

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

Heni, W.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Henkel, C.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 35431 (2008).
[Crossref]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[Crossref]

Herukerrupu, Y.

Hess, O.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Hill, A.

A. Hill, S. A. Mikhailov, and K. Ziegler, “Dielectric function and plasmons in graphene,” Europhys. Lett. 87, 27005 (2009).
[Crossref]

Hoddeson, L.

L. Hoddeson, G. Baym, and M. Eckert, “The development of the quantum-mechanical electron theory of metals: 1928–1933,” Rev. Mod. Phys. 59, 287–327 (1987).
[Crossref]

Hoessbacher, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Hoffman, A. J.

Hogan, N. J.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
[Crossref]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Holler, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Hone, J.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Hong, M.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Hong, Y.

W. Ahn, Y. Hong, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays,” Nanophotonics 4, 250–260 (2015).
[Crossref]

Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties,” J. Phys. Chem. Lett. 6, 2056–2064 (2015).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7, 4470–4478 (2013).
[Crossref]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25, 115–119 (2013).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6, 951–960 (2012).
[Crossref]

Hopper, R. H.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Horton, M. R.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Hou, W.

W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett. 10, 1314–1318 (2010).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Hsiao, H.-H.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 63107 (2016).
[Crossref]

H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
[Crossref]

Hsiao, M.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Hsu, W.-C.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical-thermal antennas for enhanced light focusing and local temperature control,” ACS Photon. 3, 1714–1722 (2016).
[Crossref]

S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE 9608, 960816 (2015).
[Crossref]

Hsu, Y.-Y.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Hu, G.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref]

Hu, H.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

Hu, L.

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
[Crossref]

Hu, Y.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol. 10, 701–706 (2015).
[Crossref]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

Huang, C. P.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96, 94–97 (2010).

Huang, J.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

Huang, W. X.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96, 94–97 (2010).

Huang, W.-L.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 63107 (2016).
[Crossref]

H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
[Crossref]

Huang, X.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref]

Huang, Y.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films,” Photonics 2, 659–683 (2015).
[Crossref]

Hubbell, J. A.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Huberman, S.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. 98.

Hugonin, J.-P.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Humer, M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Hung, W. H.

W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett. 10, 1314–1318 (2010).
[Crossref]

Hwang, E. H.

S. Das Sarma and E. H. Hwang, “Collective modes of the massless Dirac plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

I-Kai, H.

H. H. Wei, H. I-Kai, A. Bushmaker, R. Kumar, J. Theiss, and S. B. Cronin, “Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition,” Nano Lett. 8, 3278–3282 (2008).
[Crossref]

Ilic, O.

Imamova, S. E.

P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
[Crossref]

Inavalli, V. V. G. K.

B. J. Roxworthy, A. M. Bhuiya, V. V. G. K. Inavalli, H. Chen, and K. C. Toussaint, “Multifunctional plasmonic film for recording near-field optical intensity,” Nano Lett. 14, 4687–4693 (2014).
[Crossref]

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10, 911–921 (2011).
[Crossref]

Ioannou, D. E.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Ishida, Y.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Ishihara, T.

A. S. Vengurlekar, A. V. Gopal, and T. Ishihara, “Femtosecond pulse distortion at surface plasmon resonances in a plasmonic crystal: effect of surface plasmon lifetime,” Appl. Phys. Lett. 89, 181927 (2006).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Ishikawa, A.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5, 2831–2838 (2011).
[Crossref]

Ishizaka, K.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Jablan, M.

Jäckel, F.

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

Jacob, Z.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Jamois, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25, 315201 (2014).
[Crossref]

Jang, H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Jang, H.-J.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Jaque, D.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Jasperse, J. R.

J. R. Jasperse and B. Basu, “The dielectric function for the Balescu–Lenard–Poisson kinetic equations,” Phys. Fluids 29, 110–121 (1986).
[Crossref]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Jia, B.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

Jia, Q. X.

Jiang, X.

Jie Wang, Q.

A. M. Dubrovkin, J. Tao, X. Chao Yu, N. I. Zheludev, and Q. Jie Wang, “The reduction of surface plasmon losses in quasi-suspended graphene,” Sci. Rep. 5, 9837 (2015).
[Crossref]

Jo, M.-H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Joannopoulos, J. D.

A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

Johnson, C.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37, 219–226 (2005).
[Crossref]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnson, T. J.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Joulain, K.

P. Bermel, S. V. Boriskina, Z. Yu, and K. Joulain, “Control of radiative processes for energy conversion and harvesting,” Opt. Express 23, A1533–A1540 (2015).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 35431 (2008).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kale, M. J.

M. J. Kale, T. Avanesian, and P. Christopher, “Direct photocatalysis by plasmonic nanostructures,” ACS Catal. 4, 116–128 (2014).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Käll, M.

M. Svedendahl and M. Käll, “Fano interference between localized plasmons and interface reflections,” ACS Nano 6, 7533–7539 (2012).
[Crossref]

Kaminer, I.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

Kanatzidis, M. G.

M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater. 10, 382–388 (2011).
[Crossref]

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Kang, G.

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Kang, K. Y.

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Karalis, A.

A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

Karker, N.

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8, 10953–10962 (2014).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Kasahara, S.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Kasture, S.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

Kats, M. A.

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Keilmann, F.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Kelly, T.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37, 219–226 (2005).
[Crossref]

Kempa, K.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Khatib, O.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, G. Sun, W. T. Chen, W.-Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99, 211106 (2011).
[Crossref]

Kildishev, A.

Kildishev, A. V.

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6, 2776–2802 (2016).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Kim, B. J.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Kim, B.-J.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Kim, E.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Kim, H.

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

Kim, H. T.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Kim, H.-T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Kim, J.-H.

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

Kim, K.

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Kim, M.-G.

M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater. 10, 382–388 (2011).
[Crossref]

Kim, S.-G.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

Kimes, W. A.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kirchhoff, G.

G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185, 275–301 (1860).
[Crossref]

Kirillov, O.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Kiss, T.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Kivshar, Y. S.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 43903 (2008).
[Crossref]

Kleiner, V.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134, 31023 (2012).
[Crossref]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19, 23475–23482 (2011).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105, 136402 (2010).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
[Crossref]

Klingshirn, C.

M. Lambsdorff, C. Diirnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Zeitschrift fur Phys. B 64, 409–416 (1986).
[Crossref]

Kneipp, H.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer, 2006).

Kneipp, K.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer, 2006).

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Kohl, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Koirala, N.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Koishikawa, Y.

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

Koos, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 47401 (2012).
[Crossref]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Krämer, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Krasnok, A. E.

Krauss, T. F.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 41570 (2010).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kribus, A.

G. Mittelman, A. Kribus, and A. Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manag. 48, 2481–2490 (2007).
[Crossref]

Kristensen, A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8, 7630–7638 (2014).
[Crossref]

Kumar, R.

H. H. Wei, H. I-Kai, A. Bushmaker, R. Kumar, J. Theiss, and S. B. Cronin, “Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition,” Nano Lett. 8, 3278–3282 (2008).
[Crossref]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

Kwon, O. S.

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

La Grange, T.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Laforest, R.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811–817 (2010).
[Crossref]

Lagutchev, A.

Lahiri, B.

J. Chae, B. Lahiri, and A. Centrone, “Engineering near-field SEIRA enhancements in plasmonic resonators,” ACS Photon. 3, 87–95 (2016).
[Crossref]

Lakowicz, J. R.

R. Badugu, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure,” Anal. Biochem. 445, 1–13 (2014).
[Crossref]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
[Crossref]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41, 1842–1851 (2008).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lambsdorff, M.

M. Lambsdorff, C. Diirnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Zeitschrift fur Phys. B 64, 409–416 (1986).
[Crossref]

Lan, S.

Landau, L.

L. Landau, “On the vibration of the electronic plasma,” J. Phys. USSR 10, 25–34 (1946).

L. Landau and E. Lifshitz, Statistical Physics, Part 1 (Institute of Physical Problems, USSR Academy of Sciences, 1980).

Landau, L. D.

L. D. Landau and V. L. Ginzburg, “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).

Langille, M. R.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

Lany, S.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Lapotko, D.

Lapotko, D. O.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

Law, S.

Le, N. C. H.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref]

Lee, J.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Lee, J.-F.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Lee, P. S.

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[Crossref]

Lee, P.-H.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

Lee, S.-C.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 63107 (2016).
[Crossref]

H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, “Double wavelength infrared emission by localized surface plasmonic thermal emitter,” Appl. Phys. Lett. 104, 83114 (2014).
[Crossref]

T.-H. Chuang, M.-W. Tsai, Y.-T. Chang, and S.-C. Lee, “Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173128 (2006).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Lee, Y. E.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

Lee, Y. W.

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Leenheer, A. J.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115, 134301 (2014).
[Crossref]

Lefebvre, A.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Lenert, A.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Lewis, J. P.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Lewis, N. S.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115, 134301 (2014).
[Crossref]

Li, F.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Li, H.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Li, J.

Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt. Express 25, 15093–15107 (2017).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Li, M.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst 140, 386–406 (2015).
[Crossref]

Li, Q.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Q. Wang, H. Zhao, X. Du, W. Zhang, M. Qiu, and Q. Li, “Hybrid photonic-plasmonic molecule based on metal/Si disks,” Opt. Express 21, 11037–11047 (2013).
[Crossref]

Li, S.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref]

Li, W.

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2016).
[Crossref]

Li, X.

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15, 23011 (2013).
[Crossref]

Li, Z.

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Liao, B.

S. V. Boriskina, J. K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, and G. Chen, “Heat meets light on the nanoscale,” Nanophotonics 5, 134–160 (2016).
[Crossref]

S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE 9608, 960816 (2015).
[Crossref]

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[Crossref]

Lifshitz, E.

L. Landau and E. Lifshitz, Statistical Physics, Part 1 (Institute of Physical Problems, USSR Academy of Sciences, 1980).

Lim, Y. S.

H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97, 10–13 (2006).

Limaj, O.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Lin, X.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

Linic, S.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10, 911–921 (2011).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Liu, J.

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721–2728 (2015).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8, 7630–7638 (2014).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Liu, M. K.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Liu, N.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

Liu, Q.

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

Liu, R.-S.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
[Crossref]

Liu, Y.

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97, 021111 (2010).
[Crossref]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photon. 4, 1371–1380 (2017).
[Crossref]

Lochel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Lohmeller, T.

M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
[Crossref]

Loo, C.

C. Loo, A. Lowery, R. Drezek, N. J. Halas, and J. L. West, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2006).
[Crossref]

López, G. P.

S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
[Crossref]

López, J. J.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

Louie, S. G.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref]

Lowery, A.

C. Loo, A. Lowery, R. Drezek, N. J. Halas, and J. L. West, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2006).
[Crossref]

Lu, B.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Luckyanova, M. N.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010).
[Crossref]

Lundock, R.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

Lupi, S.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Lutich, A. A.

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

Ma, P.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Machehin, Y. P.

V. N. Boriskin, M. I. Ayzatsky, S. V. Boriskina, Y. P. Machehin, and A. Semenov, “Theoretical and experimental study of temperature-dependent spectral properties of multi-layer metal-dielectric nano-film structures,” in 9th International Conference on Transparent Optical Networks (2007), Vol. 4.

Machekhin, Y. P.

S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.

Mahmood, F.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maioli, P.

A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Optical absorption and scattering spectroscopies of single nano-objects,” Chem. Soc. Rev. 43, 3921–3956 (2014).
[Crossref]

Majewski, M. L.

A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

Maksymov, I.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Malis, O.

Manfredi, G.

G. Manfredi, “How to model quantum plasmas,” Fields Inst. Commun. 46, 263–287 (2005).

Manjavacas, A.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8, 7630–7638 (2014).
[Crossref]

Manoharan, V. N.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Manor, A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Marie Jokerst, N.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

Marks, L. D.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

Marks, T. J.

M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater. 10, 382–388 (2011).
[Crossref]

Marquier, F.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Marris-Morini, D.

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Martínez-Pastor, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Maslar, J. E.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Matranga, C.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Matsuda, Y.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Matsui, J.

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

Mavrokefalos, A.

S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, “Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
[Crossref]

Mazilu, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 41570 (2010).
[Crossref]

Maznev, A. A.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

Mazur, E.

D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

McClain, M.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

McGehee, M. D.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref]

McLeod, A. S.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Meixner, M.

M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmeller, and J. Feldmann, “Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles,” ACS Nano 7, 7648–7653 (2013).
[Crossref]

Melikyan, A.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Mendez, S.

S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
[Crossref]

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Meng, F.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Mertig, I.

M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
[Crossref]

Meunier, M.

D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref]

Meyhofer, E.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: from theory to experiment,” AIP Adv. 5, 53503 (2015).
[Crossref]

Miao, T. F.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96, 94–97 (2010).

Mikayama, T.

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

Mikhailov, S. A.

A. Hill, S. A. Mikhailov, and K. Ziegler, “Dielectric function and plasmons in graphene,” Europhys. Lett. 87, 27005 (2009).
[Crossref]

Minnich, A. J.

Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol. 10, 701–706 (2015).
[Crossref]

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[Crossref]

Mirkin, C. A.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

Miroshnichenko, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 43903 (2008).
[Crossref]

Mishra, A.

J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[Crossref]

Mitsuishi, M.

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

Mittelman, G.

G. Mittelman, A. Kribus, and A. Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manag. 48, 2481–2490 (2007).
[Crossref]

Miyanishi, T.

P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
[Crossref]

Miyashita, T.

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

Modestino, M.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Mohapatra, A.

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33, 863–871 (2012).
[Crossref]

Mokkapati, S.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[Crossref]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic metasurface for directional and frequency-selective thermal emission,” Phys. Rev. Appl. 4, 14023 (2015).
[Crossref]

Molesky, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 73903 (2014).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination,” J. Phys. Chem. C 118, 4890–4898 (2014).
[Crossref]

Moon, J.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Mortensen, N. A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Moskovits, M.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

M. Moskovits, I. Srnová-Šloufová, and B. Vlčková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer, 2006).

Mouhot, C.

C. Mouhot and C. Villani, “On Landau damping,” Acta Math. 207, 29–201 (2011).
[Crossref]

Mubeen, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Muehlbrandt, S.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Mueller, G.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

Mueller, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Mukherjee, S.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Muñoz, P.

D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Murphy, C. J.

N. S. Abadeer and C. J. Murphy, “Recent progress in cancer thermal therapy using gold nanoparticles,” J. Phys. Chem. C 120, 4691–4716 (2016).
[Crossref]

Mustafa, J.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref]

Naik, G. V.

G. V. Naik and J. A. Dionne, “Photon upconversion with hot carriers in plasmonic systems,” Appl. Phys. Lett. 107, 133902 (2015).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Naldoni, A.

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

Namatame, H.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Narang, P.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115, 134301 (2014).
[Crossref]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77, 75125 (2008).
[Crossref]

Natesakhawat, S.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Naughton, M. J.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Nazemifard, N.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Ndukaife, J. C.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[Crossref]

Neaton, J. B.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref]

Nedyalkov, N. N.

P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
[Crossref]

P. A. Atanasov, H. Takada, N. N. Nedyalkov, and M. Obara, “Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton,” Appl. Surf. Sci. 253, 8304–8308 (2007).
[Crossref]

Nelson, K. A.

L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures,” Sci. Rep. 5, 17131 (2015).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Neumann, A. D.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Neumann, O.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
[Crossref]

Ni, G. X.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Ni, X.

Niegemann, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 276–283 (2015).
[Crossref]

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 81913 (2008).
[Crossref]

Nnanna, A. G. A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, “Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles,” ACS Nano 8, 9035–9043 (2014).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
[Crossref]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8, 7630–7638 (2014).
[Crossref]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7, 42–49 (2013).
[Crossref]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[Crossref]

Norris, D. J.

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
[Crossref]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref]

Nusse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Nuzzo, R. G.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

O’Brie, M. J.

S. Balamurugan, S. Mendez, S. S. Balamurugan, M. J. O’Brie, and G. P. López, “Thermal response of poly(n-isopropylacrylamide) brushes probed by surface plasmon resonance,” Langmuir 19, 2545–2549 (2003).
[Crossref]

O’Holleran, K.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

O’Neal, P.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

Obara, M.

P. A. Atanasov, N. N. Nedyalkov, S. E. Imamova, T. Miyanishi, and M. Obara, “Substrate nanomodification based on heating and near field properties of gold nanoparticles,” Int. J. Nanoparticles 3, 206–219 (2010).
[Crossref]

P. A. Atanasov, H. Takada, N. N. Nedyalkov, and M. Obara, “Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton,” Appl. Surf. Sci. 253, 8304–8308 (2007).
[Crossref]

Oden, M.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Oh, S.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Oh, S. S.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref]

Ohgushi, K.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Öhman, Y.

Y. Öhman, “Polarized thermal emission from narrow tungsten filaments,” Nature 192, 254 (1961).
[Crossref]

Ohodnicki, P. R.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Okada, Y.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Okawa, M.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Olivier, S.

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Ortolani, M.

P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, “Observation of Dirac plasmons in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
[Crossref]

Osinkina, L.

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

Otanicar, T.

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

Otanicar, T. P.

Ottens, R. S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

Ou, J.-Y.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Özyilmaz, B.

G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov, “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene,” Nat. Photonics 10, 244–247 (2016).
[Crossref]

Padgett, M. J.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Padilla, W. J.

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
[Crossref]

Painter, O.

Palit, S.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Pan, J. L.

Pan, L.

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

Park, J.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Park, W.

K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Patrini, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Pendharker, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Persson, B. N. J.

A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63, 205404 (2001).
[Crossref]

Phillips, C. C.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Pientka, F.

M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Györffy, “First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons,” J. Phys. 24, 213202 (2012).
[Crossref]

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Pimpinelli, A.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014).
[Crossref]

Pines, D.

D. Pines, Elementary Excitations in Solids: Lectures on Phonons, Electrons, and Plasmons (W.A. Benjamin, 1964).

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Planck, M.

M. Planck, The Theory of Heat Radiation (Dover, 1914).

Ploschner, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 41570 (2010).
[Crossref]

Podolskiy, V. A.

Pohl, M.

M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 81401 (2012).
[Crossref]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination,” J. Phys. Chem. C 118, 4890–4898 (2014).
[Crossref]

Polman, A.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13, 1736–1742 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
[Crossref]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[Crossref]

Pospischil, A.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Pourmand, M.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25, 115–119 (2013).
[Crossref]

Poursalehi, R.

A. Ziashahabi and R. Poursalehi, “The effects of surface oxidation and interparticle coupling on surface plasmon resonance properties of aluminum nanoparticles as a UV plasmonic material,” Procedia Mater. Sci. 11, 434–437 (2015).
[Crossref]

Poursoti, Z.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Povinelli, M.

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Pramanik, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[Crossref]

Psaltis, D.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009).
[Crossref]

Pu, Y.

M. S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, S. Birkhold, J. A. Hubbell, and D. Psaltis, “Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation,” Nano Lett. 16, 2159–2167 (2016).

Puscasu, I.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92, 233102 (2008).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Pusch, A.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Qazilbash, M. M.

Qian, W.

X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref]

Qiao, Q.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

Qiu, M.

Quan, X.

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

Quetschke, V.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Quinn, M.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Rädler, J. O.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Ramakrishna, S. A.

Raman, A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Ramanathan, S.

Ranasingha, O.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Reddy, H.

Reddy, P.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: from theory to experiment,” AIP Adv. 5, 53503 (2015).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).

Reinhard, B. M.

Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties,” J. Phys. Chem. Lett. 6, 2056–2064 (2015).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, X. Zhao, and B. M. Reinhard, “Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays,” Nanophotonics 4, 250–260 (2015).
[Crossref]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25, 115–119 (2013).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7, 4470–4478 (2013).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6, 951–960 (2012).
[Crossref]

J. Wang, X. Yu, S. V. Boriskina, and B. M. Reinhard, “Quantification of differential ErbB1 and ErbB2 cell surface expression and spatial nanoclustering through plasmon coupling,” Nano Lett. 12, 3231–3237 (2012).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012).
[Crossref]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA 108, 3147–3151 (2011).
[Crossref]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C 115, 4578–4583 (2011).
[Crossref]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J. Phys. Chem. C 115, 24437–24453 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19, 22305–22315 (2011).
[Crossref]

J. Wang, S. V. Boriskina, H. Wang, and B. M. Reinhard, “Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling,” ACS Nano 5, 6619–6628 (2011).
[Crossref]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009).
[Crossref]

Reitze, D. H.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 14301 (2011).
[Crossref]

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Riboni, F.

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Richter, C. A.

H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J. E. Maslar, D. E. Ioannou, and Q. Li, “Topological insulator Bi2Se3 nanowire high performance field-effect transistors,” Sci. Rep. 3, 1757 (2013).
[Crossref]

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination,” J. Phys. Chem. C 118, 4890–4898 (2014).
[Crossref]

Ringe, E.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Rioux, D.

D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An analytic model for the dielectric function of Au, Ag, and their alloys,” Adv. Opt. Mater. 2, 176–182 (2014).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Rivera, N.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

Roaf, D. J.

D. J. Roaf, “The Fermi surfaces of copper, silver and gold II. Calculation of the Fermi surfaces,” Philos. Trans. R. Soc. London A 255, 135–152 (1962).
[Crossref]

Rogers, J. A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Roschuk, T.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. Hong, S. A. Maier, F. Udrea, R. H. Hopper, and O. Hess, “A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref]

Rosengarten, G.

Rotschild, C.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[Crossref]

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

Roxworthy, B. J.

K. C. Toussaint, B. J. Roxworthy, H. Chen, A. M. Bhuiya, and Q. Ding, “Plasmonic nanoantennas: from nanotweezers to plasmonic photography,” Opt. Photon. News 26(6), 24–31 (2015).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, V. V. G. K. Inavalli, H. Chen, and K. C. Toussaint, “Multifunctional plasmonic film for recording near-field optical intensity,” Nano Lett. 14, 4687–4693 (2014).
[Crossref]

Roy, A.

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33, 863–871 (2012).
[Crossref]

Ruoso, G.

G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375–378 (2010).
[Crossref]

Rytov, S. M.

S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, 1959).

Saadeh, D.

G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized thermal emission by thin metal wires,” New J. Phys. 11, 33014 (2009).
[Crossref]

Sadat, S.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

Saha, J. K.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

Sakaguchi, F.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Salleo, A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Sambegoro, P.

S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, “Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
[Crossref]

Sands, T. D.

Sandus, O.

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 73701 (2011).
[Crossref]

Sanvitto, D.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton-plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Sato, E.

M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, “Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles,” Langmuir 23, 7472–7474 (2007).
[Crossref]

Satpathy, S.

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33, 863–871 (2012).
[Crossref]

Schaich, W. L.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92, 233102 (2008).
[Crossref]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Schell, K.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. USA 110, 11677–11681 (2013).
[Crossref]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Schlögl, R.

C. Wang, O. Ranasingha, S. Natesakhawat, P. R. Ohodnicki, M. Andio, J. P. Lewis, C. Matranga, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, D. P. Tsai, and R. Schlögl, “Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2,” Nanoscale 5, 6968–6974 (2013).
[Crossref]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Schrieffer, J. R.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).
[Crossref]

Schroeder, J. L.

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
[Crossref]

Schuck, P. J.

P. J. Schuck, “Nanoimaging: hot electrons go through the barrier,” Nat. Nanotechnol. 8, 799–800 (2013).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Schwartz, J.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

Scully, M. O.

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Semenov, A.

V. N. Boriskin, M. I. Ayzatsky, S. V. Boriskina, Y. P. Machehin, and A. Semenov, “Theoretical and experimental study of temperature-dependent spectral properties of multi-layer metal-dielectric nano-film structures,” in 9th International Conference on Transparent Optical Networks (2007), Vol. 4.

S. V. Boriskina, J. Tong, Y. Tsurimaki, V. N. Boriskin, A. Semenov, M. I. Ayzatskiy, Y. P. Machekhin, and G. Chen, “Topological darkness of Tamm plasmons for high-sensitivity singular-phase optical detection,” in Frontiers in Optics (2016), paper FW2E.2.

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

Senty, T. R.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Seo, G.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).
[Crossref]

Sergeant, N. P.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref]

Shalaev, V. M.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6, 2776–2802 (2016).
[Crossref]

A. Karalis, J. D. Joannopoulos, J. M. Elazar, M. L. Majewski, and V. M. Shalaev, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Solar-powered plasmon-enhanced heterogeneous catalysis,” Nanophotonics 5, 112–133 (2016).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721–2728 (2015).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Shang, W.

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Shen, Q.

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

Shen, S.

S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, “Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Sheng, X.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]

Shetty, A. M.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

Shi, L.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20, 1910–1916 (2010).
[Crossref]

Shi, Z.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1, 22–27 (2013).
[Crossref]

Shibauchi, T.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Shimada, K.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Shimojima, T.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Shin, S.

T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-independent superconducting gaps in iron-pnictides,” Science 332, 564–567 (2011).
[Crossref]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Shum, C.

Y. Zhang, Y. Du, C. Shum, B. Cai, N. C. H. Le, X. Chen, B. Duck, C. Fell, Y. Zhu, and M. Gu, “Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate,” Sci. Rep. 6, 24972 (2016).
[Crossref]

Shvets, G.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Sim, S.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons,” Nat. Commun. 6, 8814 (2015).
[Crossref]

Singh, N.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Singh, R.

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).
[Crossref]

Skauli, T.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref]

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Smit, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Smith, D. R.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

So, J.-K.

J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref]

Sohn, K.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: a universal parameter to describe size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3, 1479–1483 (2012).
[Crossref]

Soljacic, M.

X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M. Soljačić, “Tailoring the energy distribution and loss of 2D plasmons,” New J. Phys. 18, 105007 (2016).
[Crossref]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]

Song, B.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10, 253–258 (2015).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: from theory to experiment,” AIP Adv. 5, 53503 (2015).
[Crossref]

Song, C.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A bioinspired, reusable, paper-based system for high-performance large-scale evaporation,” Adv. Mater. 27, 2768–2774 (2015).
[Crossref]

D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015).
[Crossref]

S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “The impact of surface chemistry on the performance of localized solar-driven evaporation system,” Sci. Rep. 5, 13600 (2015).
[Crossref]

Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, and T. Deng, “Evaporation: bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface,” Small 10, 3233 (2014).
[Crossref]

Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, H. Hu, C. Song, Z. Chen, W. Shang, and T. Deng, “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep. 4, 6246 (2014).
[Crossref]

Song, H. S.

O. S. Kwon, H. S. Song, J. Conde, H. Kim, N. Artzi, and J.-H. Kim, “Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo,” ACS Nano 10, 1512–1521 (2016).
[Crossref]

Sonnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[Crossref]

Sorger, V. J.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. H. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, J. M. Gordon, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt. 18, 73004 (2016).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Soskin, M.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 10401 (2017).
[Crossref]

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[Crossref]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 24002 (2012).
[Crossref]

Srnová-Šloufová, I.

M. Moskovits, I. Srnová-Šloufová, and B. Vlčková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116, 10435–10446 (2002).
[Crossref]

Stafford, R. J.

A. M. Elliott, R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle, “Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging,” Med. Phys. 34, 3102–3108 (2007).
[Crossref]

Starko-Bowes, R.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 55101 (2017).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 45901 (2011).
[Crossref]

Stauber, T.

T. Stauber, “Plasmonics in Dirac systems: from graphene to topological insulators,” J. Phys. 26, 123201 (2014).
[Crossref]

Stefani, F. D.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Stehr, J.

L. Osinkina, S. Carretero-Palacios, J. Stehr, A. A. Lutich, F. Jäckel, and J. Feldmann, “Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating,” Nano Lett. 13, 3140–3144 (2013).
[Crossref]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3, 141–155 (2014).
[Crossref]

Stockman, M. I.