Abstract

Composites consisting of metal nanoparticles (NPs) embedded in dielectric media may present large nonlinear optical response due to electronic transitions in the NPs. When the metal NPs are suspended in liquids or embedded in solid substrates, the obtained composites may present high-order optical nonlinearities (HON) beyond the third-order nonlinearity, usually studied for most materials. Moreover, it is observed that the magnitude and phase of the effective high-order susceptibilities can be controlled by adjusting the light intensity, I, and the volume filling fraction, f, occupied by the NPs. Therefore, the sensitivity to the values of I and f allowed the development of a nonlinearity management procedure for investigation and control of various phenomena, such as self- and cross-phase modulation, spatial modulation instability, as well as bright and vortex solitons stabilization, in media presenting relevant third-, fifth-, and seventh-order susceptibilities. As a consequence, it is reviewed in this paper how the exploitation of HON in metal–dielectric nanocomposites may reveal new ways for optimization of all-optical switching devices, light-by-light guiding, as well as the control of solitons propagation for long distances. Also, theoretical proposals and experimental works by several authors are reviewed that may open the possibility to identify new high-order phenomena by applying the nonlinearity management procedure. Therefore, the paper is focused on the properties of metal nanocomposites and demonstrates that these plasmonic composites are versatile platforms for high-order nonlinear optical studies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear polarization instability in cubic-quintic plasmonic nanocomposites

Albert S. Reyna, Emeric Bergmann, Pierre-François Brevet, and Cid B. de Araújo
Opt. Express 25(18) 21049-21067 (2017)

An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites

Albert S. Reyna and Cid B. de Araújo
Opt. Express 23(6) 7659-7666 (2015)

Spatial phase modulation due to quintic and septic nonlinearities in metal colloids

Albert S. Reyna and Cid B. de Araújo
Opt. Express 22(19) 22456-22469 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).
    [Crossref]
  2. M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
    [Crossref]
  3. P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).
    [Crossref]
  4. B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).
  5. Y. Gogotsi, Nanomaterials Handbook (CRC Press, 2006).
  6. N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
    [Crossref]
  7. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
    [Crossref]
  8. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).
  9. S. A. Maier, Plasmonics–Fundamentals and Applications (Springer, 2007).
  10. M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
    [Crossref]
  11. C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).
  12. M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
    [Crossref]
  13. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  14. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
    [Crossref]
  15. P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
    [Crossref]
  16. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
    [Crossref]
  17. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).
    [Crossref]
  18. A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).
    [Crossref]
  19. W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).
    [Crossref]
  20. W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).
    [Crossref]
  21. J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
    [Crossref]
  22. J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).
    [Crossref]
  23. J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
    [Crossref]
  24. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
    [Crossref]
  25. A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).
    [Crossref]
  26. P. N. Prasad, Nanophotonics (Wiley, 2004).
  27. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  28. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [Crossref]
  29. S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
    [Crossref]
  30. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [Crossref]
  31. V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).
    [Crossref]
  32. S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
    [Crossref]
  33. J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).
    [Crossref]
  34. U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).
  35. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  36. R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
    [Crossref]
  37. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
    [Crossref]
  38. J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
    [Crossref]
  39. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
    [Crossref]
  40. B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), Chap. 5, pp. 131–145.
  41. B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).
  42. V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).
    [Crossref]
  43. T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).
    [Crossref]
  44. J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
    [Crossref]
  45. T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
    [Crossref]
  46. A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).
    [Crossref]
  47. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref]
  48. E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
    [Crossref]
  49. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
    [Crossref]
  50. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  51. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
    [Crossref]
  52. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
    [Crossref]
  53. C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.
  54. L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
    [Crossref]
  55. L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
    [Crossref]
  56. E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
    [Crossref]
  57. A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
    [Crossref]
  58. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
    [Crossref]
  59. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
    [Crossref]
  60. A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
    [Crossref]
  61. D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).
    [Crossref]
  62. P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
    [Crossref]
  63. A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
    [Crossref]
  64. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  65. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
    [Crossref]
  66. R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
    [Crossref]
  67. E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
    [Crossref]
  68. K.-H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).
    [Crossref]
  69. Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
    [Crossref]
  70. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
    [Crossref]
  71. S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).
    [Crossref]
  72. J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
    [Crossref]
  73. S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
    [Crossref]
  74. R. A. Ganeev, Nonlinear Optical Properties of Materials (Springer, 2013).
  75. R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
    [Crossref]
  76. L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
    [Crossref]
  77. B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
    [Crossref]
  78. C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
    [Crossref]
  79. C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).
    [Crossref]
  80. E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560  nm,” Opt. Express 18, 21636–21644 (2010).
    [Crossref]
  81. J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28, 2448–2455 (2011).
    [Crossref]
  82. J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
    [Crossref]
  83. M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.
  84. T. C. Choy, Effective Medium Theory: Principles and Applications in Fundamentals and Applications of Nanophotonics (Oxford University, 2016).
  85. V. A. Markel, “Introduction to the Maxwell-Garnett approximation: tutorial,” J. Opt. Soc. Am. A 33, 1244–1256 (2016).
    [Crossref]
  86. V. A. Markel, “Maxwell-Garnet approximation (advanced topics): tutorial,” J. Opt. Soc. Am. A 33, 2237–2255 (2016).
    [Crossref]
  87. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).
    [Crossref]
  88. R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
    [Crossref]
  89. O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).
    [Crossref]
  90. B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).
    [Crossref]
  91. R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).
    [Crossref]
  92. J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
    [Crossref]
  93. H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).
    [Crossref]
  94. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).
    [Crossref]
  95. K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).
    [Crossref]
  96. D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
    [Crossref]
  97. R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).
    [Crossref]
  98. A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).
    [Crossref]
  99. N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
    [Crossref]
  100. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).
  101. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
    [Crossref]
  102. M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
    [Crossref]
  103. I. Towers and B. A. Malomed, “Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).
    [Crossref]
  104. H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
    [Crossref]
  105. A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
    [Crossref]
  106. H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
    [Crossref]
  107. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
    [Crossref]
  108. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
    [Crossref]
  109. R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
    [Crossref]
  110. M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).
    [Crossref]
  111. S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).
    [Crossref]
  112. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  113. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
    [Crossref]
  114. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  115. W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
    [Crossref]
  116. F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
    [Crossref]
  117. K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).
    [Crossref]
  118. R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
    [Crossref]
  119. V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).
    [Crossref]
  120. R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).
    [Crossref]
  121. J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).
    [Crossref]
  122. Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).
    [Crossref]
  123. Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7, 949–952 (2009).
    [Crossref]
  124. C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
    [Crossref]
  125. M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
    [Crossref]
  126. R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
    [Crossref]
  127. H.-J. Zhang, J.-H. Dai, P.-Y. Wang, and L.-A. Wu, “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,” Opt. Lett. 14, 695–696 (1989).
    [Crossref]
  128. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).
    [Crossref]
  129. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).
    [Crossref]
  130. N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
    [Crossref]
  131. E. Santamato and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).
    [Crossref]
  132. G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
    [Crossref]
  133. T. Myint and R. R. Alfano, “Spatial phase modulation from permanent memory in doped glass,” Opt. Lett. 35, 1275–1277 (2010).
    [Crossref]
  134. D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).
    [Crossref]
  135. M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
    [Crossref]
  136. S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).
    [Crossref]
  137. L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
    [Crossref]
  138. S. Wen and D. Fan, “Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions,” J. Opt. Soc. Am. B 19, 1653–1659 (2002).
    [Crossref]
  139. V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
    [Crossref]
  140. Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).
    [Crossref]
  141. N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).
    [Crossref]
  142. B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
    [Crossref]
  143. D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).
    [Crossref]
  144. Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
    [Crossref]
  145. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).
  146. W.-P. Hong, “Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation,” Opt. Commun. 213, 173–182 (2002).
    [Crossref]
  147. R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).
    [Crossref]
  148. M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).
    [Crossref]
  149. H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
    [Crossref]
  150. G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).
    [Crossref]
  151. J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).
    [Crossref]
  152. K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).
    [Crossref]
  153. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
    [Crossref]
  154. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
    [Crossref]
  155. Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).
    [Crossref]
  156. Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).
    [Crossref]
  157. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).
    [Crossref]
  158. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).
    [Crossref]
  159. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
    [Crossref]
  160. E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
    [Crossref]
  161. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [Crossref]
  162. N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).
    [Crossref]
  163. R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
    [Crossref]
  164. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
    [Crossref]
  165. D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
    [Crossref]
  166. G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).
    [Crossref]
  167. T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).
    [Crossref]
  168. E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
    [Crossref]
  169. Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
    [Crossref]
  170. A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
    [Crossref]
  171. A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).
    [Crossref]
  172. K. C. Jorge, R. Riva, N. A. S. Rodrigues, J. M. S. Sakamoto, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
    [Crossref]
  173. K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).
    [Crossref]
  174. Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).
    [Crossref]
  175. A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).
    [Crossref]
  176. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
    [Crossref]
  177. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
    [Crossref]
  178. Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
    [Crossref]
  179. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
    [Crossref]
  180. E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).
  181. V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
    [Crossref]
  182. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  183. A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).
    [Crossref]
  184. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
    [Crossref]
  185. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  186. R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
    [Crossref]
  187. C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
    [Crossref]
  188. A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
    [Crossref]
  189. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).
    [Crossref]
  190. A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
    [Crossref]
  191. R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).
    [Crossref]
  192. R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
    [Crossref]
  193. J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
    [Crossref]
  194. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  195. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
    [Crossref]
  196. A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
    [Crossref]
  197. J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).
    [Crossref]
  198. P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
    [Crossref]
  199. A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).
    [Crossref]
  200. R. Kashiap and N. Finlayson, “Nonlinear polarization coupling and instabilities in single-mode liquid-cored optical fibers,” Opt. Lett. 17, 405–407 (1992).
    [Crossref]
  201. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17, 13429–13434 (2009).
    [Crossref]
  202. G. Stegeman, D. G. Papazoglou, R. Boyd, and S. Tzortzakis, “Nonlinear birefringence due to non-resonant, higher-order Kerr effect in isotropic media,” Opt. Express 19, 6387–6399 (2011).
    [Crossref]
  203. H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).
    [Crossref]
  204. S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
    [Crossref]
  205. A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).
    [Crossref]
  206. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
    [Crossref]
  207. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [Crossref]
  208. S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
    [Crossref]
  209. G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
    [Crossref]
  210. A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).
    [Crossref]
  211. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [Crossref]
  212. M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
    [Crossref]
  213. J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).
    [Crossref]
  214. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).
    [Crossref]
  215. D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).
    [Crossref]
  216. J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).
    [Crossref]
  217. N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).
    [Crossref]
  218. S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).
    [Crossref]
  219. R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
    [Crossref]
  220. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  221. T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
    [Crossref]
  222. V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).
    [Crossref]
  223. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  224. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  225. J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
    [Crossref]
  226. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).
    [Crossref]
  227. K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).
    [Crossref]
  228. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
    [Crossref]
  229. M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
    [Crossref]
  230. J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).
    [Crossref]
  231. Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).
    [Crossref]
  232. Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
    [Crossref]
  233. Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
    [Crossref]
  234. B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
    [Crossref]
  235. J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
    [Crossref]
  236. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
    [Crossref]
  237. R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).
    [Crossref]
  238. A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
    [Crossref]

2017 (4)

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
[Crossref]

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).
[Crossref]

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).
[Crossref]

2016 (11)

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
[Crossref]

V. A. Markel, “Introduction to the Maxwell-Garnett approximation: tutorial,” J. Opt. Soc. Am. A 33, 1244–1256 (2016).
[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
[Crossref]

V. A. Markel, “Maxwell-Garnet approximation (advanced topics): tutorial,” J. Opt. Soc. Am. A 33, 2237–2255 (2016).
[Crossref]

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).
[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).
[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

2015 (8)

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).
[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).
[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).
[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).
[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

2014 (18)

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).
[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).
[Crossref]

K. C. Jorge, R. Riva, N. A. S. Rodrigues, J. M. S. Sakamoto, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).
[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).
[Crossref]

J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).
[Crossref]

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).
[Crossref]

2013 (11)

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).
[Crossref]

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).
[Crossref]

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).
[Crossref]

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).
[Crossref]

2012 (15)

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).
[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).
[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).
[Crossref]

S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).
[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).
[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).
[Crossref]

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

2011 (17)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).
[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
[Crossref]

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).
[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).
[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).
[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).
[Crossref]

G. Stegeman, D. G. Papazoglou, R. Boyd, and S. Tzortzakis, “Nonlinear birefringence due to non-resonant, higher-order Kerr effect in isotropic media,” Opt. Express 19, 6387–6399 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28, 2448–2455 (2011).
[Crossref]

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).
[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

2010 (12)

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
[Crossref]

K.-H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).
[Crossref]

T. Myint and R. R. Alfano, “Spatial phase modulation from permanent memory in doped glass,” Opt. Lett. 35, 1275–1277 (2010).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560  nm,” Opt. Express 18, 21636–21644 (2010).
[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).
[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
[Crossref]

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

2009 (5)

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).
[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).
[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17, 13429–13434 (2009).
[Crossref]

Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7, 949–952 (2009).
[Crossref]

2008 (4)

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

2007 (10)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
[Crossref]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
[Crossref]

2006 (8)

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).
[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).
[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
[Crossref]

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

2005 (6)

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).
[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).
[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
[Crossref]

2004 (7)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[Crossref]

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref]

2003 (5)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).
[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).
[Crossref]

2002 (4)

2001 (4)

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).
[Crossref]

G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

2000 (1)

1999 (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref]

1998 (5)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).
[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).
[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[Crossref]

1997 (6)

D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
[Crossref]

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).
[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).
[Crossref]

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).
[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
[Crossref]

1996 (4)

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).
[Crossref]

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
[Crossref]

1995 (1)

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref]

1994 (2)

1993 (5)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).
[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).
[Crossref]

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).
[Crossref]

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[Crossref]

1992 (4)

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).
[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref]

R. Kashiap and N. Finlayson, “Nonlinear polarization coupling and instabilities in single-mode liquid-cored optical fibers,” Opt. Lett. 17, 405–407 (1992).
[Crossref]

1991 (1)

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

1990 (4)

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).
[Crossref]

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).
[Crossref]

1989 (2)

1988 (1)

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

1987 (2)

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).
[Crossref]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

1986 (4)

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).
[Crossref]

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).
[Crossref]

1985 (3)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[Crossref]

1984 (1)

1982 (2)

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).
[Crossref]

1981 (2)

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
[Crossref]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).
[Crossref]

1980 (1)

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).
[Crossref]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

1974 (2)

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).
[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
[Crossref]

1973 (1)

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).
[Crossref]

1970 (2)

D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).
[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

1969 (2)

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

1967 (1)

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[Crossref]

1966 (2)

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).
[Crossref]

1965 (2)

H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).
[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

1964 (2)

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).
[Crossref]

1857 (1)

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
[Crossref]

Acioli, L. H.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
[Crossref]

Afanasjev, V. V.

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).
[Crossref]

Afonso, C. N.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).
[Crossref]

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).
[Crossref]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

Ahmad, M. B.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Aitchison, J. S.

Akhmediev, N.

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).
[Crossref]

Akozbek, N.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Alabastri, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Aleali, H.

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).
[Crossref]

Alee, K. S.

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
[Crossref]

Aleksic, B. N.

Aleksic, N. B.

Alencar, M. A. R. C.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

Alfano, R. R.

Algorri, J. F.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Almeida, E.

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

Alvarez, M. M.

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

Amaral, A. M.

Andersen, D. R.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

Anderson, D.

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).
[Crossref]

Andrade-Lucio, J. A.

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

Andrejco, M. J.

Anvari, J. Z.

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).
[Crossref]

Ara, M. H. M.

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

Arakelian, S. M.

Arora, A. K.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Asahara, Y.

Assanto, G.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

Atangana, J.

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

Atkinson, A. L.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Ausman, L. K.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

Avasthi, D. K.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Bache, M.

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

Baida, H.

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Baizakov, B. B.

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).
[Crossref]

Bakhramov, S. A.

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

Baltar, H. T. M. C. M.

Bang, O.

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

Barbosa-Silva, R.

Barnes, W. L.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[Crossref]

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Becker-Willinger, C.

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).
[Crossref]

Belic, M.

Belsley, M.

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).
[Crossref]

Bergmann, E.

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

Bezryadina, A.

Bhadra, S. K.

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).
[Crossref]

Bian, R. X.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref]

Birchak, J. R.

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
[Crossref]

Biswas, A.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Blau, W. J.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).

Bloemer, M. J.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Boardman, A. D.

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

Bonnet, C.

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Borhanian, J.

J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).
[Crossref]

Boudebs, G.

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Boyd, R.

Boyd, R. W.

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).
[Crossref]

D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
[Crossref]

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).
[Crossref]

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref]

Brandt-Pearce, M.

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).
[Crossref]

Breuer, H. D.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).
[Crossref]

Brevet, P.-F.

Brito-Silva, A. M.

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560  nm,” Opt. Express 18, 21636–21644 (2010).
[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
[Crossref]

Brock, R. S.

Broyer, M.

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).
[Crossref]

Burrows, C. P.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[Crossref]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Callen, W. R.

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[Crossref]

Caño-García, M.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Can-Uc, B.

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Carretero-Gonzáles, R.

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
[Crossref]

Castaño, V. M.

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

Castro, H. P. S.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

Centurion, M.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Chari, R.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
[Crossref]

Chattopadhyay, R.

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).
[Crossref]

Chauvet, M.

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
[Crossref]

Chávez-Cerda, S.

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

Chen, J.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Chen, Z.

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).
[Crossref]

Cheng, X.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Cheng, Y.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7, 949–952 (2009).
[Crossref]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Chong, C.

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
[Crossref]

Choy, T. C.

T. C. Choy, Effective Medium Theory: Principles and Applications in Fundamentals and Applications of Nanophotonics (Oxford University, 2016).

Christodoulides, D.

Christodoulides, D. N.

Christou, J.

Chung, Y.

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).
[Crossref]

Clerici, M.

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

Coghlan, D.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Comberg, U.

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).
[Crossref]

Conti, C.

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

Cottancin, E.

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Crasovan, L.-C.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Crespo-Sosa, A.

Crut, A.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

D’Aguanno, G.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

da Silva, M. G. A.

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

Dabby, F. W.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

Dafounansou, O.

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

Dai, J.-H.

Dambly, L.

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
[Crossref]

Daneshfar, A.

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

Darroudi, M.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Das, G.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Dawes, E. L.

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

De Angelis, F.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

de Araújo, C. B.

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).
[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).
[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).
[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).
[Crossref]

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).
[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560  nm,” Opt. Express 18, 21636–21644 (2010).
[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).
[Crossref]

de Ceglia, D.

M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.

de Heer, W. A.

W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).
[Crossref]

de Matos, C. J. S.

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

de Oliveira, P. W.

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).
[Crossref]

de Oliveira, R. E. P.

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

de S. Menezes, L.

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

Dehghani, Z.

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

del Coso, R.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

Del Fatti, N.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Delong, K. W.

Deng, L.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
[Crossref]

Destro, M. G.

Desyatnikov, A. S.

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[Crossref]

Devaux, F.

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
[Crossref]

Di Fabrizio, E.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Divsar, F.

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

Djurišic, A. B.

Dolgaleva, K.

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).
[Crossref]

Dominguez, C. T.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

Dong, N.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Draine, B.

B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[Crossref]

B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), Chap. 5, pp. 131–145.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

Dunn, R. C.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref]

Dupont, J.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

Durbin, S. D.

Duyne, R. P. V.

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

Eddeqaqi, N. C.

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

Elazar, J. M.

Eldridge, P. S.

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
[Crossref]

El-Ganainy, R.

Elliott, R. J.

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[Crossref]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

Ensley, T. R.

Eremina, E.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
[Crossref]

Esbensen, B. K.

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

Essama, B. G. O.

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

Falcão-Filho, E. L.

Fan, D.

Faraday, M.

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
[Crossref]

Farafonov, V. G.

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).
[Crossref]

Faraji, N.

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

Fardad, S.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

Faucher, O.

Feng, L.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Ferdinandus, M. R.

Fibich, G.

G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).
[Crossref]

Fiebig, M.

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
[Crossref]

R. Kashiap and N. Finlayson, “Nonlinear polarization coupling and instabilities in single-mode liquid-cored optical fibers,” Opt. Lett. 17, 405–407 (1992).
[Crossref]

Fisher, G.

Fisher, G. L.

Fishman, D. A.

Flatau, P.

B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).

Flatau, P. J.

Fleischer, J. W.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).
[Crossref]

Flytzanis, C.

Fokine, M.

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

Frederick, B. M.

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

Friberg, S. R.

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Froehly, C.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Gajc, M.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Galembeck, A.

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560  nm,” Opt. Express 18, 21636–21644 (2010).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
[Crossref]

Gall, D.

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

R. A. Ganeev, Nonlinear Optical Properties of Materials (Springer, 2013).

Gao, Y.

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
[Crossref]

García, H. A.

Garcia-Betancourt, M. L.

García-Cámara, B.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Gardner, L. G.

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
[Crossref]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Geday, M. A.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Gehr, R. J.

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).
[Crossref]

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[Crossref]

Geints, Y. E.

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).
[Crossref]

Geng, T.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Gentile, M.

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Genzel, L.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

Gesualdi, M. R. R.

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).
[Crossref]

Giessen, H.

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Giugni, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Gogotsi, Y.

Y. Gogotsi, Nanomaterials Handbook (CRC Press, 2006).

Gomes, A. S. L.

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).
[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).
[Crossref]

Gomez, L. A.

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
[Crossref]

Gonçalves, M. R.

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).
[Crossref]

Gonzalo, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

Gordel, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Gosavi, S. W.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
[Crossref]

Goyal, A.

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

Graener, H.

Gregory, D. A.

Grischkowsk, D.

D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).
[Crossref]

Gu, M.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Guo, H.

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Guo, R.

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Gupta, R.

Gustafson, T. K.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

Hache, F.

Haes, A. J.

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

Hagan, D. J.

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

Halperin, W. P.

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).
[Crossref]

Han, W.-T.

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref]

Harley, R. T.

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
[Crossref]

Harrison, R. G.

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
[Crossref]

Hata, C.

Hayakawa, T.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

He, F.

He, K.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Heinrich, M.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

Hellmers, J.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
[Crossref]

Henini, M.

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
[Crossref]

Hentschel, M.

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Herrmann, J.

Hertz, E.

Hickmann, J. M.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).
[Crossref]

Hilger, A.

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Hipp, J. W.

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
[Crossref]

Hoekstra, A. G.

Hong, W.-P.

W.-P. Hong, “Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation,” Opt. Commun. 213, 173–182 (2002).
[Crossref]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Hovenier, J. W.

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

Hu, H.

Huang, J. P.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Huffman, D. H.

C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

Husakou, A.

Husu, H.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Huth, B. G.

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[Crossref]

Ikushima, A. J.

Il’in, V. B.

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).
[Crossref]

Jackel, J. L.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[Crossref]

Javadi, Z.

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

Jayabalan, J.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
[Crossref]

J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28, 2448–2455 (2011).
[Crossref]

Jia, B.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Jia, S.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).
[Crossref]

Jilavi, M. H.

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).
[Crossref]

Jorge, K. C.

Jyothi, L.

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
[Crossref]

Kalele, S. A.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
[Crossref]

Kamalov, S. R.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

Kaneko, S.

Kaplan, A. E.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

Karimzadeh, R.

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).
[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).
[Crossref]

Karmakar, B.

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

Kartashov, Y.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Kashiap, R.

Kassab, L. R. P.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

Kauranen, M.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Kawamura, G.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
[Crossref]

Kawataba, A.

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).
[Crossref]

Kelley, P. L.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

Kelly, T. S.

Kevrekidis, P. G.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref]

Khan, S.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
[Crossref]

Kharazmi, A.

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

Khoury, J. T.

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).
[Crossref]

Kik, P. G.

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).
[Crossref]

Kim, K.-H.

King, N. J.

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
[Crossref]

Kip, D.

Kivshar, Y.

Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).
[Crossref]

Kivshar, Y. S.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).
[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[Crossref]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).
[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
[Crossref]

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).
[Crossref]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

Klos, A.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Kodirov, M. K.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

Kofane, T. C.

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

Kohanzadeh, Y.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

Kohtani, Y.

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).
[Crossref]

Kokhkharov, A. M.

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

Kokhkharov, R. A.

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

Kolkowski, R.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Kolokolov, A. A.

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).
[Crossref]

Korolevich, A. N.

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).
[Crossref]

Kothari, N. C.

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
[Crossref]

Kreibig, U.

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[Crossref]

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).
[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).
[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).

Krolikowski, W.

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).
[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

Krumhansl, J. A.

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).
[Crossref]

Kubo, R.

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).
[Crossref]

Kuittinen, M.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Kuladeep, R.

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
[Crossref]

Kulkarni, S. K.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
[Crossref]

Kumar, C. N.

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).
[Crossref]

Kuznetsov, E. A.

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

Lagoudakis, P. G.

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lange, J.

Lapine, M.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).
[Crossref]

Laukkanen, J.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Lavorel, B.

Law, C. T.

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref]

Leaird, D. E.

Leath, P. L.

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).
[Crossref]

Lebeault, M.-A.

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

Leblond, H.

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

Lederer, F.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

Lehtolahti, J.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Lei, D.

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

Lermé, J.

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Leung, P. T.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref]

Levy, O.

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).
[Crossref]

Li, C.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
[Crossref]

Li, R.-Z.

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Li, S.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

Li, X.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Li, Y.

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Liang, B.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Liao, Y.

Liberale, C.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Liebsch, A.

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).
[Crossref]

Lim, B.

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
[Crossref]

Lin, A.

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

Lisak, M.

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).
[Crossref]

Liu, L.

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Liu, S.

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Liu, X.

Liu, Y.

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).
[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).
[Crossref]

Liu, Z.

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Looyenga, H.

H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).
[Crossref]

Loriot, V.

Lu, J.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Lu, J. Q.

Lu, W.

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
[Crossref]

Lumme, K.

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

Lushnikov, P. M.

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).
[Crossref]

Luther-Davies, B.

Mackowski, D. W.

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

Mahdi, M. A.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics–Fundamentals and Applications (Springer, 2007).

Maioli, P.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Majewski, M. L.

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[Crossref]

Makhmanov, U. K.

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

Mäkitalo, J.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Malomed, B.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Malomed, B. A.

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).
[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).
[Crossref]

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).
[Crossref]

I. Towers and B. A. Malomed, “Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).
[Crossref]

Maneuf, S.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Mansour, N.

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).
[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).
[Crossref]

Mao, Z.

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

Margulis, W.

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

Markel, V. A.

Martínez-Richa, A.

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Mattiucci, N.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Mavi, H. S.

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).
[Crossref]

Mazilu, D.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

McFarland, A. D.

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

McMahon, J. M.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

Melo, C. P.

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

Meneghetti, M. R.

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

Menezes, L. S.

Mihalache, D.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Miranda, M. H. G.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
[Crossref]

Mishchenko, M. I.

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

Mishra, Y. K.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Mitchell-Thomas, R. C.

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
[Crossref]

Mizrahi, V.

Mohamadou, A.

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

Mohan, S.

Mohapatra, S.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Mokhtari, B.

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

Morandotti, R.

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

Moreira, A. C. L.

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

Munin, E.

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).
[Crossref]

Myint, T.

Nakamura, A.

Nascimento, C. M.

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

Nikolaenko, A. E.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Nogami, M.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

Norin, L.

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Ogusu, K.

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).
[Crossref]

Ohnuma, M.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
[Crossref]

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Oliveira, M. M.

Oliver, A.

Oliver, M. K.

Omi, S.

Orlinski, K.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Otón, J. M.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Oyoshi, K.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
[Crossref]

Padgett, M. J.

Panamarev, N. S.

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).
[Crossref]

Panigrahi, P. K.

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).
[Crossref]

Pantell, R. H.

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[Crossref]

Papazoglou, D. G.

Park, K.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).
[Crossref]

Parsons, J.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[Crossref]

Pasquazi, A.

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

Passier, R.

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
[Crossref]

Passota, T.

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).
[Crossref]

Pawlak, D. A.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Peccianti, M.

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

Peceli, D.

Peddanarappagari, K. V.

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).
[Crossref]

Pelinovsky, D. E.

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).
[Crossref]

Pellarin, M.

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Peña-Ramírez, A.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Peng, B.

Persson, B. N. J.

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).
[Crossref]

Philip, R.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Pilipetski, N. F.

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
[Crossref]

Pilla, V.

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).
[Crossref]

Pinchuck, A.

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[Crossref]

Pinchuk, A.

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).
[Crossref]

Pinchuk, A. O.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

Poliakov, E. Y.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Porter, M. A.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref]

Poudereux, D.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Prasad, P. N.

P. N. Prasad, Nanophotonics (Wiley, 2004).

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

Prokopjeva, M. S.

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).
[Crossref]

Prusty, S.

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).
[Crossref]

Psaltis, D.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref]

Qi, X.

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Qian, W.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Qiao, L.

Quintana, X.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Radermann, K.

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

Rahola, J.

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

Raju, T. S.

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).
[Crossref]

Rakic, A. D.

Rakotoarimalala, S.

Rangel-Rojo, R.

Rao, D. N.

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
[Crossref]

Rapoport, Y. G.

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
[Crossref]

Reed, J. M.

Regan, J. J.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

Reichert, M.

Ren, Y.-X.

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Requejo-Isidro, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

Reyna, A. S.

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).
[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).
[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).
[Crossref]

Ribeiro, S. J. L.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

Ricard, D.

Riva, R.

Rodrigues, J. J.

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
[Crossref]

Rodrigues, N. A. S.

Rotschild, C.

Roussignol, P.

Rozanov, N. N.

N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).
[Crossref]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

Saade, J.

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).
[Crossref]

Sadecka, K.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Sadrolhosseini, A. R.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Saha, M.

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).
[Crossref]

Sahoo, S.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Sahraei, R.

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Saifi, M. A.

Saion, E.

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

Saito, H.

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

Sakamoto, J. M. S.

Salandrino, A.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

Salerno, M.

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).
[Crossref]

Samadi, A.

Sambles, J. R.

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[Crossref]

Samoc, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

Sánchez-Pena, J. M.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Santamato, E.

Sarma, A. K.

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).
[Crossref]

Sato, R.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[Crossref]

Scalora, M.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Schaaff, G.

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

Schatz, G. C.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref]

Schmitz, B.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).
[Crossref]

Schuh, R.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Sears, S. M.

Seaton, C. T.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

Segev, M.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).
[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
[Crossref]

D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).
[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref]

Seidel, M.

Seifert, G.

Shadrivov, I. V.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).
[Crossref]

Shafigullin, M. N.

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

Shahmiri, M.

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

Shameli, K.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Shao, H.

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).
[Crossref]

Sharma, V.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).
[Crossref]

Sharma, V. K.

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Shen, Y. R.

Shukla, A. K.

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).
[Crossref]

Siikanen, R.

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Silberberg, Y.

Singh, A.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
[Crossref]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref]

Sjödin, N.

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

Skarka, V.

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Skrabalak, S. E.

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
[Crossref]

Smith, D. D.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Smith, P. W.

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

Smith, P. W. E.

Sobral-Filho, R. G.

Solis, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

Soljacic, M.

Song, Y.-J.

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Soto-Crespo, J. M.

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).
[Crossref]

Soven, P.

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).
[Crossref]

Srinivasarao, M.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).
[Crossref]

Stegeman, G.

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
[Crossref]

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

Stepanov, A. L.

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

Stolen, R. H.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

Stroud, D.

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).
[Crossref]

Stryland, E. W. V.

Sukhov, A. V.

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
[Crossref]

Sulem, C.

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).
[Crossref]

Sulem, P. L.

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).
[Crossref]

Sun, C.

Sun, G.

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).
[Crossref]

Sun, T.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Surma, H. B.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Swartzlander, G. A.

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

Syrchin, M. S.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Tabiryan, N. V.

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
[Crossref]

Tagwo, H.

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

Takeda, Y.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
[Crossref]

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

Talley, J. D.

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
[Crossref]

Tamchek, N.

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

Tanji, H.

Taubert, R.

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Teixeira, S. R.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[Crossref]

Tikhonenko, V.

Tiofack, C. G. L.

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

Tiwari, N. R.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
[Crossref]

Tokisaki, T.

Toma, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Torner, L.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[Crossref]

Toroghi, S.

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).
[Crossref]

Towers, I.

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Trejo-Durán, M.

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

Trillo, S.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

Tsutsui, Y.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
[Crossref]

Tuccio, S.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Turitsyn, S. K.

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

Tzortzakis, S.

Uchida, K.

Ueda, M.

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

Umran, F. A.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Urruchi, V.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

Vakhitov, N. G.

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).
[Crossref]

Vallée, F.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Vera-Graziano, R.

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

Vergaz, R.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Vezmar, I.

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

Victor, J. M.

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
[Crossref]

Vincent, M. A.

M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.

Vogel, E. M.

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Völlmer, M.

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).

von Plessen, G.

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).
[Crossref]

Voshchinnikov, N. V.

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

Wabnitz, S.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

Wacogne, B.

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
[Crossref]

Wada, O.

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Wan, W.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).
[Crossref]

Wang, C.

Wang, G.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Wang, J.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Wang, L.-D.

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Wang, P.-Y.

Wang, S.

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).
[Crossref]

Wang, Y.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[Crossref]

Warrier, A. M.

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Watekar, P. R.

Webster, S.

Wei, C.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Weiner, A. M.

Wen, F.

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

Wen, S.

Wender, H.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

Whetten, R. L.

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

Whinnery, J. R.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Winful, H. G.

Wlotzka, A.

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

Wriedt, T.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).
[Crossref]

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
[Crossref]

Wu, L.-A.

Wu, Z.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

Xia, Y.

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
[Crossref]

Xiang, Y.

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

Xie, X. S.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref]

Xiong, Y.

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
[Crossref]

Xue, Y. L.

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).
[Crossref]

Yang, R.

Yao, A. M.

Yao, K.

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).
[Crossref]

Yao, P.

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Yin, H.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

Younus, W. M. M.

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

Yu, C.

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).
[Crossref]

Yu, D.

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
[Crossref]

Yu, H.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Yu, K. W.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Yuan, C.

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

Yurkin, M. A.

Zaccaria, R. P.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Zakaria, A.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Zakhidov, E. A.

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

Zamiri, R.

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Zangwill, A.

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).
[Crossref]

Zanoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
[Crossref]

Zarbin, A. J. G.

Zdunek, K.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Zel’dovich, B. Y.

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
[Crossref]

Zemlyanov, A. A.

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).
[Crossref]

Zeng, J.

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).
[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).
[Crossref]

Zhang, H.

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Zhang, H.-J.

Zhang, J.

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

Zhang, L.

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).
[Crossref]

Zhang, P.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

Zhang, S.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

Zhang, T.

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Zhang, X.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
[Crossref]

Zhang, X.-Y.

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Zhang, Y.

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).
[Crossref]

Zhao, J.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

Zhao, P.

Zhao, W.

Zheltikov, A. M.

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

Zheng, H.

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

Zhou, L.

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

Zhou, Q.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Zhou, T.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
[Crossref]

Zhu, Q.

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

Zhu, S.-Q.

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Zhuang, S.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

Acc. Chem. Res. (1)

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[Crossref]

ACS Appl. Mater. Interface (1)

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).
[Crossref]

ACS Nano (1)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

Adv. Eng. Mater. (1)

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).
[Crossref]

Adv. Funct. Mater. (1)

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).
[Crossref]

Adv. Mater. Lett. (1)

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Opt. Photonics (1)

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).
[Crossref]

Angew. Chem. (1)

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).
[Crossref]

Ann. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

Annalen der Physik (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (4)

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).
[Crossref]

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).
[Crossref]

Appl. Phys. Lett. (6)

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).
[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).
[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).
[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).
[Crossref]

Chem. Mater. (1)

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[Crossref]

Chem. Phys. Lett. (1)

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Chin. Opt. Lett. (1)

Comp. Phys. Commun. (1)

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).
[Crossref]

Europhys. Lett. (1)

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[Crossref]

J. Appl. Phys. (4)

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).
[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).
[Crossref]

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).
[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref]

J. Comput. Theor. Nanosci. (1)

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).
[Crossref]

J. Eur. Opt. Soc. (1)

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).
[Crossref]

J. Exp. Theor. Phys. (1)

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

J. Exp. Theor. Phys. Lett. (1)

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

J. Lightwave Technol. (1)

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).
[Crossref]

J. Lumin. (1)

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

J. Mater. Sci. (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).
[Crossref]

J. Mod. Opt. (3)

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).
[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).
[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).
[Crossref]

J. Nanomater. (1)

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).
[Crossref]

J. Nanophotonics (1)

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).
[Crossref]

J. Opt. (3)

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).
[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).
[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).
[Crossref]

J. Opt. A (3)

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).
[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).
[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).
[Crossref]

J. Opt. B (1)

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (14)

D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).
[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).
[Crossref]

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).
[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).
[Crossref]

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).
[Crossref]

D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
[Crossref]

I. Towers and B. A. Malomed, “Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
[Crossref]

R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
[Crossref]

J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28, 2448–2455 (2011).
[Crossref]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
[Crossref]

S. Wen and D. Fan, “Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions,” J. Opt. Soc. Am. B 19, 1653–1659 (2002).
[Crossref]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

J. Phys. Chem. B (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).
[Crossref]

J. Phys. Chem. C (4)

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).
[Crossref]

J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).
[Crossref]

J. Phys. D (4)

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).
[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
[Crossref]

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).
[Crossref]

J. Phys. Soc. Jpn. (1)

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).
[Crossref]

J. Quantum Spectrosc. Radiat. Transfer (4)

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).
[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).
[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).
[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).
[Crossref]

Light Sci. Appl. (1)

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Mater. Chem. Phys. (1)

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).
[Crossref]

Mater. Sci. Eng. R (1)

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).
[Crossref]

Materials (1)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Nano Lett. (2)

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).
[Crossref]

Nano. Res. Lett. (1)

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).
[Crossref]

Nanotechnol. Rev. (1)

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).
[Crossref]

Nanotechnology (1)

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Nat. Photonics (3)

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).
[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Nat. Phys. (2)

Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).
[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).
[Crossref]

New J. Phys. (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Nonlinear Dyn. (1)

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).
[Crossref]

Opt. Commun. (10)

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).
[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).
[Crossref]

W.-P. Hong, “Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation,” Opt. Commun. 213, 173–182 (2002).
[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).
[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).
[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).
[Crossref]

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).
[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).
[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).
[Crossref]

Opt. Data Process. Storage (1)

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).
[Crossref]

Opt. Express (14)

K.-H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).
[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560  nm,” Opt. Express 18, 21636–21644 (2010).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
[Crossref]

G. Stegeman, D. G. Papazoglou, R. Boyd, and S. Tzortzakis, “Nonlinear birefringence due to non-resonant, higher-order Kerr effect in isotropic media,” Opt. Express 19, 6387–6399 (2011).
[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17, 13429–13434 (2009).
[Crossref]

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).
[Crossref]

S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).
[Crossref]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
[Crossref]

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).
[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).
[Crossref]

Opt. Fiber Technol. (1)

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).
[Crossref]

Opt. Lett. (14)

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).
[Crossref]

H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
[Crossref]

H.-J. Zhang, J.-H. Dai, P.-Y. Wang, and L.-A. Wu, “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,” Opt. Lett. 14, 695–696 (1989).
[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
[Crossref]

E. Santamato and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).
[Crossref]

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
[Crossref]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
[Crossref]

T. Myint and R. R. Alfano, “Spatial phase modulation from permanent memory in doped glass,” Opt. Lett. 35, 1275–1277 (2010).
[Crossref]

R. Kashiap and N. Finlayson, “Nonlinear polarization coupling and instabilities in single-mode liquid-cored optical fibers,” Opt. Lett. 17, 405–407 (1992).
[Crossref]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).
[Crossref]

Opt. Rev. (1)

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).
[Crossref]

Opt. Spectrosc. (1)

N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).
[Crossref]

Optica (1)

Optik (Stuttgart) (1)

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).
[Crossref]

Philos. Trans. R. Soc. London (1)

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
[Crossref]

Phys. D (3)

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).
[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).
[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).
[Crossref]

Phys. Plasmas (1)

J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).
[Crossref]

Phys. Rep. (2)

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

Phys. Rev. (1)

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

Phys. Rev. A (12)

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).
[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).
[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref]

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).
[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).
[Crossref]

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
[Crossref]

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).
[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).
[Crossref]

Phys. Rev. B (8)

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).
[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).
[Crossref]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).
[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).
[Crossref]

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).
[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).
[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).
[Crossref]

Phys. Rev. E (4)

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).
[Crossref]

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).
[Crossref]

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).
[Crossref]

Phys. Rev. Lett. (14)

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).
[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).
[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref]

D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).
[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).
[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[Crossref]

Phys. Scripta (1)

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).
[Crossref]

Physica (1)

H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).
[Crossref]

Plasmonics (1)

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).
[Crossref]

Proc. IEEE (1)

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).
[Crossref]

Prog. Opt. (1)

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[Crossref]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Radiophys. Quantum Electron. (1)

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).
[Crossref]

Rep. Prog. Phys. (2)

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).
[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).
[Crossref]

Rev. Mod. Phys. (4)

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).
[Crossref]

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).
[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).
[Crossref]

W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).
[Crossref]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref]

SIAM J. Appl. Math. (1)

G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).
[Crossref]

Solid State Commun. (1)

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).
[Crossref]

Surf. Sci. (2)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[Crossref]

Other (19)

P. N. Prasad, Nanophotonics (Wiley, 2004).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).

Y. Gogotsi, Nanomaterials Handbook (CRC Press, 2006).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).

T. C. Choy, Effective Medium Theory: Principles and Applications in Fundamentals and Applications of Nanophotonics (Oxford University, 2016).

S. A. Maier, Plasmonics–Fundamentals and Applications (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).

B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), Chap. 5, pp. 131–145.

R. A. Ganeev, Nonlinear Optical Properties of Materials (Springer, 2013).

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Figure 1
Figure 1

Real and imaginary parts of the dielectric function of a thin semitransparent gold film. Comparison between Drude model with ϵib=1 (blue lines), ϵib=11.5 (red lines), Drude–Lorentz (DL, green lines), and experimental data (black points). Reprinted with permission from [14]. Copyright 2013 MDPI.

Figure 2
Figure 2

(a),(b) Theoretical and (c) experimental extinction efficiency of gold NPs having different diameters. (a) Drude–Lorentz model and (b) Drude model with ϵib=11.5. Adapted with permission from [14]. Copyright 2013 MDPI.

Figure 3
Figure 3

Tuning the LSP wavelengths by varying the size and shape of the nanoparticles. Reprinted with permission from [29]. Copyright 2007 SPIE.

Figure 4
Figure 4

Absorbance of a colloid containing gold nanorods (aspect ratio: 4.1). Reprinted with permission from Link and El-Sayed, J. Phys. Chem. B, 103, 8410–8426 (1999) [30]. Copyright 1999 American Chemical Society.

Figure 5
Figure 5

Calculated polarizability of (a) gold nanorods—sample 1 (length: 100 nm; width: 50 nm) and (d) silica–gold core–shell particles—sample 2 (core radius: 60 nm; shell thickness: 15 nm) suspended in water. The blue and red curves represent the real and imaginary parts of the polarizability, αR and αIm, respectively. The calculated and measured normalized extinction cross section for samples 1 and 2 are shown in (b) and (e), respectively. (c) Tunability of αR for gold nanorods as a function of the rod length with a fixed width of 50 nm. (f) Tuning of αR for silica–gold core–shell particles similar to those in sample 2 as a function of the silica core size for a fixed shell thickness of 15 nm. The vertical lines indicate the wavelength at 532 nm. Reprinted with permission from Fardad et al., Nano Lett. 14, 2498–2504 (2014) [32]. Copyright 2014 American Chemical Society.

Figure 6
Figure 6

(a) Photograph shows the colors of aqueous colloids containing silver nanoprisms with average sizes from 30 to 150 nm. The yellow sample was not irradiated and contains the NPs used as seeds for the nanoprisms preparation. The numbers in the vials indicate the light wavelength used to shape the nanoprisms. (b) Extinction spectra exhibiting the normalized absorption bands for the samples irradiated by LEDs with emission wavelengths indicated in the inset. Reprinted with permission from [33]. Copyright 2014, with permission from Elsevier.

Figure 7
Figure 7

Dependence of the effective NL parameters as a function of the volume fraction, f. For silver NPs suspended in acetone: (a) n2eff and n4effI (focusing quintic medium with f=1.6×105); (b) α2eff and α4effI with I=9  GW/cm2. Adapted figure with permission from [105]. Copyright 2014 by the American Physical Society. For silver NPs suspended in CS2: (c) n2eff+n4effI and n6effI2 (defocusing septimal medium with f=3.3×105); (d) n2eff+n6effI2 and n4effI (focusing quintic medium with f=1.5×105) with I=0.1  GW/cm2; (e) α2eff+α4effI and α6effI2 (absorptive septimal medium with f=1.2×105) with I=0.25  GW/cm2. Adapted with permission from [98].

Figure 8
Figure 8

(a) Experimental setup of SSPM effect: lens (L) with focal distance (fL=20  mm) focusing a laser beam on a NL sample (S). (b) Far-field diffraction patterns produced by the MDNC, with NL response dominated by the quintic nonlinearity, placed in (b)–(d) the focal plane and (e) before and (f) after the focal plane. Laser peak intensities of (b),(e),(f) 70  GW/cm2, (c) 90  GW/cm2, and (d) 100  GW/cm2. (g)–(k) Experimental intensity distributions (black lines) corresponding to (b)–(f), respectively. Red lines show the numerical simulations obtained from Eq. (18), using the NL coefficients obtained by Z-scan technique. Adapted with permission from [98].

Figure 9
Figure 9

Transverse profile of the probe beam due to XPM-induced transverse SMI in (a) cubic, (b) quintic, and (c) cubic–quintic media. (d)–(f) Normalized intensity distributions versus normalized radial coordinate obtained from (a)–(c), respectively. (g)–(i) Numerical results obtained from Eq. (19) using the susceptibility values from Figs. 7(a) and 7(b). Pump beam intensity: 2  GW/cm2; probe beam intensity: 0.2  GW/cm2. Reprinted with permission from [105]. Copyright 2014 by the American Physical Society.

Figure 10
Figure 10

Transverse profile of the probe beam, due to XPM-induced transverse SMI in a septimal medium, for beams separation of (a) 0, (b) w0, and (c) 2.2w0, between the centers of the incident pump (white line) and probe (pink line) beams, where w0 is the beam waist. (d)–(f) Normalized intensity distributions of the probe beam in the presence (black lines) and absence (red lines) of the pump beam, obtained from (a)–(c), respectively. (g)–(i) Numerical results obtained from Eq. (19) using n2eff=n4eff=0 and n6eff=1.1×1030  cm6/W3. Pump beam intensity: 0.1  GW/cm2; probe beam intensity: 0.01  GW/cm2. Reprinted with permission from [98].

Figure 11
Figure 11

(a) Experimental setup for analysis of (2+1)D SBS in a quintic–septimal medium. (b) Dependence of the transmitted laser beam radius, after 2 mm long cell, as a function of the input intensity. (c) Experimental and (d) theoretical side-view images of the SBS propagation, for different intensities. (e) Experimental and (f) theoretical beam radius as a function of propagation distance obtained from (c) and (d), respectively. Adapted figure with permission from [171]. Copyright 2014 by the American Physical Society.

Figure 12
Figure 12

Representations of beams carrying optical angular momentum. The Poynting vector is not parallel to the propagation direction and follows a spiral trajectory around the beam axis. Helical phase fronts for (a) l=0, (b) l=1, (c) l=2, and (d) l=3. Reprinted with permission from [182]. Copyright 2011 Optical Society of America.

Figure 13
Figure 13

Spiral phase plate used to generate beams carrying optical angular momentum. Reprinted with permission from [182]. Copyright 2011 Optical Society of America.

Figure 14
Figure 14

Experimental setup: P, polarizer; T, telescope; VPP, vortex phase plate; M, mirror; SF, spatial filter; BS, beam splitter; spherical lenses with f1=5  mm (L1) and f2=5  mm (L2). Camera CCD1 produced the transmitted-beam spatial profile. Cylindrical lenses with f=40  mm (CL1) and f=80  mm (CL2), and CCD2 were used in the SLIM setup. The cell’s length is 10 mm. Reprinted with permission from [188].

Figure 15
Figure 15

(a) Transverse vortex beam profiles behave as OVS, along 10 mm propagation distance. (b) Numerical simulation of the vortex beam propagation for intensities of 0.1  GW/cm2 (linear behavior) and 3  GW/cm2 (soliton-type behavior). (c) Transverse beam profiles and intensity distributions of a weak Gaussian beam being guided by the OVS described in (a). Adapted with permission from [188].

Figure 16
Figure 16

(a) Experimental setup for observation of the polarization instability effect. (b) Normalized transmittance as a function of the incident polarization azimuth angle for cubic, quintic, and cubic–quintic media. From top to bottom, the incident peak intensities are 6, 24, 42, and 60  MW/cm2. (c) Gain spectra of modulation instability versus the frequency shift along the fast axis cubic (black line), quintic (red line), and cubic–quintic (blue line) media. Incident intensity: 42  MW/cm2. (d) Vertical (black circles) and horizontal (red squares) polarization transmittance as a function of the incident peak intensities. Solid lines in (b) and (d) were obtained by numerical simulation of Eq. (20). Adapted with permission from [205].

Figure 17
Figure 17

(a) Refractive and absorptive NL coefficients of silver colloids considering cubic, quintic, and septimal nonlinearities. (b) Open-aperture Z-scan profiles for silver colloids with f=5.9×105. (c) Figures of merit (W and T1) for AOS. (d) Kerr signals for silver colloids using a picosecond laser at 532 nm. Adapted with permission from [210].

Figure 18
Figure 18

(a) The soliton propagation constant k versus the total power P for media with focusing third-order nonlinearity (g3=1). Discrete points correspond to the stationary solution of Eq. (21) with g5=1 (red circles), 0 (blue triangles) , and +1 (black squares). Dashed lines were obtained using the variational approximation. (b) The maximum power Pmax admitting the stable soliton propagation in media, as per the VK criterion, with the focusing cubic nonlinearity (g3=1) and different values of the quintic coefficient g5. Adapted with permission from [175]. Copyright 2015 by the American Physical Society.

Figure 19
Figure 19

High-intensity beam (a) attracting nanoparticles with positive polarizabilities and (b) repelling nanoparticles with negative polarizabilities. Adapted with permission from [219].

Figure 20
Figure 20

(a) Orientation of gold nanorods along the electric field E of a linearly polarized beam. (b) Field distribution around the nanorod at the longitudinal plasmon resonance. (c) Linear diffraction of a low-power beam (10 mW) when injected into an aqueous suspension of gold nanorods. (d) Formation of a stable self-trapped filament at 250 mW over 5 cm (25 diffraction lengths) mediated by the negative polarizability of the colloid. (e)–(h) Beam profiles observed after 5 cm of propagation at different input power levels, showing the transition from diffractive broadening at 10 mW to self-trapping at 250 mW. For reasons of visibility, the output beam profiles have been normalized with respect to their individual peak intensities. Reprinted with permission from Fardad et al., Nano Lett., 14, 2498–2504 (2014) [32]. Copyright 2014 American Chemical Society.

Figure 21
Figure 21

(a) Schematic of a silica–gold core–shell particle and (b) field distribution at its plasmon resonance. (c) Linear diffraction pattern at 10 mW and (d) stable soliton formation in the NP suspension at 300 mW. (e),(f) Corresponding normalized output beam profiles after a propagation distance of 5 cm. Reprinted with permission from Fardad et al., Nano Lett., 14, 2498–2504 (2014) [32]. Copyright 2014 American Chemical Society.

Figure 22
Figure 22

(a) Dimensions of the L-shaped gold particles. (b)–(d) Layouts of the investigated samples and the coordinate systems. The normalized SHG intensity as a function of the linear input polarization angle measured from u direction is illustrated by (e) Sample A and (f) Sample B. The circles are experimental data and the solid lines are fits to the measured points. Dashed lines are the predicted responses calculated by the orientational average of the responses of individual particles. Adapted with permission from Husu et al., Nano Lett., 12, 673–677 (2012) [228]. Copyright 2012 American Chemical Society.

Figure 23
Figure 23

(a) SHG spectra for metamaterials featuring a variety of designs. The values given as insets represent the peak value of each spectrum on an arbitrary scale. The spectra in the center column represent a convolution of contributions from three independent SHG tensor components. Reprinted with permission from [229]. Copyright 2011 Springer.

Figure 24
Figure 24

Nonlinear phase shift in the 1  μm2 chalcogenide waveguide: (a) input power of 1.6 mW, no plasmonic enhancement; (b) input power of 1.6 mW, nonlinearity enhanced by the elliptical Au nanoparticles with the filling fraction of 0.001; (c) input power of 1.6 mW, nonlinearity enhanced by the dimers of elliptical Au nanoparticles with the filling fraction of 0.001; (d) input power of 0.8 W, no plasmonic enhancement; (e) input power of 0.8 W, nonlinearity enhanced by the elliptical Au nanoparticles with the filling fraction of 0.001; (f) input power of 8 W, no plasmonic enhancement. Figure 7 reprinted with permission from Khurgin and Sun, Phys. Rev. A, 88, 053838 (2013) [230]. Copyright 2013 by the American Physical Society.

Figure 25
Figure 25

Magnitude of the electric field enhancement factor inside adjacent small (solid line) and large (dashed line) nanoparticles, for (a) identical sizes, (b) a volume ratio of 4.8, and (c) a volume ratio of 30. (d) Complex enhanced figure-of-merit of the third-order NL optical response of a plasmonic metamaterial containing silver nanoparticles with a single size (radius=1  nm) and of a cascaded plasmonic metamaterial with a nearest-neighbor volume ratio of 30. The legend shows the corresponding unit cell of the periodic metamaterial. The labels λA and λS correspond to the antisymmetric and symmetric modes, respectively. Figures 3(a)–3(c) and Fig. 6 reprinted with permission from Toroghi and Kik, Phys. Rev. B, 85, 045432 (2012) [111]. Copyright 2012 by the American Physical Society.

Figure 26
Figure 26

Impact of the quintic nonlinearity on the XMI gain spectra with pump and probe incident power of 100 W, in the (a),(c) normal and (b),(d) anomalous dispersion regimes with (a),(b) equal and (c),(d) different perturbation frequencies. The dashed lines are the gain spectra for the corresponding solid lines after propagation by 2 km considering attenuation. Reprinted from Liu et al., “Modulation instability induced by cross-phase modulation in negative materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 [231]. Copyright 2015, with permission from Elsevier.

Figure 27
Figure 27

Modulation instability gain as a function of perturbation frequency Ω and higher-order nonlinear parameter p for (a) nondissipative and (b) dissipative systems. Reprinted from Saha and Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher-order dispersion effects,” Opt. Commun. 291, 321–325 [148]. Copyright 2013, with permission from Elsevier.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ϵNP(ω)=ϵibωp2ω2+iγω,
ϵNP(ω)=1f0ωp2ω2+iγ0ωj=1mfjωp2(ω2ωj2)+iγjω,
α=(1+η)ϵ0V(ϵNPϵh)(ϵNP+ηϵh),
ωLSP=Ne2meϵ0Re(ϵib+ηϵh)γ2.
αext=18πVNPλ[ϵh(ω)]3/2Im[ϵNP(ω)](Re[ϵNP(ω)]+2ϵh(ω))2+Im[ϵNP(ω)]2,
ENP=(1+η)ϵh(ϵNP+ηϵh)E0.
ϵeffϵhϵeff+2ϵh=fϵNPϵhϵNP+2ϵh,
P=ϵhL{ϵhϵhL[χh+3βf1βf]}E0=ϵhLχ(|E0|2)E0,
ϵNP(NL)=ϵh(L)[34χNP(3)|ENP|2+58χNP(5)(|ENP|2)2+3564χNP(7)(|ENP|2)3],
ϵh(NL)=ϵh(L)[34χh(3)|E0|2+ϑ(E0)],
χeff(3)=fL2|L|2χNP(3)+χh(3),
χeff(5)=f[L2|L|4χNP(5)610L3|L|4(χNP(3))2310L|L|6|χNP(3)|2],
χeff(7)=f{L2|L|6χNP(7)+1235L4|L|6(χNP(3))3335|L|8[4|L|2χNP(3)+|L|2(χNP(3))*]|χNP(3)|247L|L|6[2  L2χNP(3)+|L|2(χNP(3))*]χNP(5)},
CAscheme:T(z,ΔϕNL)1+N=1(4N)Δϕ0(2N+1)(z/z0)[(z/z0)2+(2N+1)2][(z/z0)2+1]N,
OAscheme:T(z,q0)1πq0ln[1+q0exp(τ2)]dτ,
CAscheme:ΔTp,vI0.406kn2effLeff(1)+0.210kn4effILeff(2)+0.130kn6effI2Leff(3)+,
OAscheme:ΔTp,vI(2)32Leff(1)(α2eff+α4effI+α6effI2+),
I=I0|0J0(kθr)exp[r2win2iϕ(r)]rdr|2,
(1)j2ikEjz+ΔEj=ω2c2{3χeff(3)[2(|E1|2+|E2|2)|Ej|2]+10χeff(5)[3(|E1|2+|E2|2)22|Ej|4]+35χeff(7)[4(|E1|2+|E2|2)3+3|Ej|2[2(|E1|4+|E2|4)3|Ej|4]]}Ej,
A±z+i2β(2)2A±τ2+α02A±=i2(Δβ0)A+iωn0cF(1)χxxxx(3)[(|A+|2+|A|2)+|A|2]A±+i5ω12n0cF(2)χxxxxxx(5){4[|A++A|2(A++A)*|A+A|2(A+A)*]A+[|A++A|4+|A+A|4]}A±,
iψz+122ψx2+g3ψ|ψ|2+g5ψ|ψ|4+ψ|ψ|6=0,
iψz+12k0nh2ψ+k0(nNPnh)ρVNPψ+iσρ2ψk0|ΔnT|ψ=0,

Metrics